Литмир - Электронная Библиотека
Содержание  
A
A

Причем случись изменение значения хотя бы одной из фундаментальных постоянных в ту или другую сторону на бесконечно малую долю процента – и жизнь на Земле никогда бы не возникла.

Для того чтобы создать сложнейшие макромолекулы, необходимо было провести отбор химических элементов.

В настоящее время известно более 100 химических элементов, однако, основу живых систем составляют только шесть элементов, получивших название органогенов С, Н, О, N, Р, S (углерод, водород, кислород, азот, фосфор, сера), общая весовая доля которых составляет 97,4 %. За ними следуют еще 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: Na, K, Ca, Mg, Mn, Fe, Si, Al, Cl, Cu, Zn, Co (натрий, калий, кальций, марганец, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт). Их весовая доля в организмах менее 1,6 %.

Об отборе свидетельствует и общая химическая картина мира. В настоящее время известно около 8 миллионов химических соединений. Из них подавляющее большинство (около 96 %) – это органические соединения, основной строительный материал, в которых все те же 6 + 12 элементов.

Интересно, что из остальных химических элементов Природа создала лишь около 300 тысяч неорганических соединений. Принцип отбора действует и далее. Так из миллионов органических соединений в построении живого участвуют лишь несколько сотен. Далее, из 100 известных аминокислот в состав белков входят только 20. Важно отметить, что из такого узкого круга отобранных природой органических веществ сформировался весь труднообозримый мир живого.

Каковы же принципы отбора химических соединений – своеобразной «химической подготовки» к образованию сложнейших биологических систем? Выяснилось, что определяющая роль здесь принадлежит катализаторам, то есть веществам, активирующим молекулы реагентов и повышающим скорость химических реакций.

Этот процесс ныне представляется следующим образом.

1. На ранних стадиях химической эволюции мира катализ отсутствовал. Условия высоких температур (выше 5 тысяч градусов по Кельвину[39]), электрические разряды и радиация препятствуют образованию конденсированного состояния.

2. Проявления катализа начинаются при снижении температуры ниже 5 тысяч градусов по Кельвину и образовании первичных тел.

3. Роль катализатора возрастала (но пока еще незначительно) по мере того, как физические условия (главным образом температура) приближались к современным земным значениям. Появление аминокислот и первичных сахаров было своеобразной некаталитической подготовкой старта для большого катализа.

4. Роль катализа в развитии химических систем после достижения стартового состояния, то есть известного количественного минимума органических и неорганических соединений, начала возрастать с фантастической быстротой. Отбор активных соединений происходил в природе из тех продуктов, которые получились относительно большим числом химических путей и обладали широким каталитическим спектром.

В 60-х годах XX века было экспериментально установлено, что в ходе химической эволюции отбирались те химические структуры, которые способствовали резкому повышению активности и избирательной способности катализаторов. Это позволило профессору МГУ А. П. Руденко в 1964 году выдвинуть теорию саморазвития открытых каталитических систем, которая в развернутой форме появилась в 1969 году и была названа теорией эволюционного катализа.

Профессор А. П. Руденко считал, что единственной формой диалектического перехода от неживого вещества к живому среди всех возможных процессов развития материального мира является биогенез, или эволюционная химия, приводящая к возникновению жизни! [13].

Теория эволюционного катализа

Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, и, следовательно, эволюционирующим веществом являются катализаторы, а не молекулы.

При катализе идет реакция химического взаимодействия катализатора с реагентами с образованием при этом промежуточных комплексов со свойствами переходного состояния. Именно такой комплекс Руденко назвал элементарной каталитической системой.

Если в ходе реакции идет постоянный приток извне новых реактивов, отвод готовой продукции, а также выполняются некоторые дополнительные условия, реакция может идти неограниченно долго, находясь на одном и том же стационарном уровне. Такие многократно возобновляемые комплексы являются элементарными открытыми каталитическими системами (ЭОКС).

С точки зрения А. П. Руденко, процесс химической эволюции неотделим от явления катализа, причем объектом служит не отдельная молекула, а каталитическая система.

Наиболее сложным случаем катализа является автокатализ, возникающий при каталитическом воздействии продукта реакции на вступающие в нее исходные вещества. Таким образом, на химическом уровне организации материи возникает способность многократного самоускорения, изменения и развития, а саморазвитие, самоорганизация и самоусложнение каталитических систем происходят за счет постоянного притока энергии.

Основным источником энергии, по мнению Руденко, является химическая реакция, которая борется с равновесием и самоорганизацией каталитических систем. В результате борьбы преимущество получает та, которая развивается на основе реакции с бо́льшим выделением тепла[40] и с ростом активности (базисная реакция). Максимальное эволюционное преимущество получает каталитическая система, развивающаяся на базе реакции с самым большим тепловыделением.

Базисная реакция является не только источником энергии, необходимой для полезной работы в системе, которая направлена против равновесия, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.

– Руденко считает, что источником энергии, необходимой для полезной работы в организме, которая направлена против равновесия, является базовая химическая реакция. Базовая реакция – это та, которая идет с наибольшим тепловыделением. Это правильно?

Аструс: Нет, не совсем. Внутренняя энергия не задевается. Надо обязательно затрагивать именно внутреннюю энергию.

– Нам непонятно: с одной стороны, базовая реакция должна идти с ростом негэнтропии, а с другой – она характеризуется большим тепловыделением. А это ведет к росту энтропии (потерь энергии). Как связать два противоположных свойства?

Аструс: Как внешнее и внутреннее.

– Реакция – внешний фактор, выделение тепла – внутренний фактор. А как задеть внутреннюю энергию?

Аструс: Привлечь как диссипативный элемент, который нарушает закон равновесия.

– Нарушает закон в какую сторону?

Аструс: Возникает дискретность то вверх, то вниз. Вызывается раскачка. А при раскачивании возникает эффект усиления.

В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Те же центры, изменение которых связано с уменьшением активности, постоянно выключаются из кинетического процесса, они «не выживают».

С точки зрения Руденко, при многократных последовательных необратимых изменениях катализатора переход его на все более высокие уровни сопровождается эволюцией механизма базисной реакции как за счет изменений состава и структуры катализаторов, функционировавших в начале реакции, так и за счет дробления химического процесса на элементарные стадии и появления новых катализаторов этих стадий. Эти новые катализаторы появляются за счет их саморазвития.

А. П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализатора, при которых происходит максимальное увеличение его абсолютной активности.

вернуться

39

5000 градусов по Кельвину составляет 4726,85 градусов по Цельсию.

вернуться

40

Любая химическая реакция заключается в разрыве одних химических связей и образовании других. Когда в результате химической реакции при образовании новых связей выделяется энергии больше, чем потребовалось для разрушения «старых» связей в исходных веществах, то избыток энергии высвобождается в виде тепла.

40
{"b":"552183","o":1}