Литмир - Электронная Библиотека
Содержание  
A
A

Можно привести следующие примеры отдельных типов кристаллических структур: кубическая гранецентрированная решетка самородной меди, построенная из атомов меди, кубическая решетка галита (каменной соли), построенная из как бы вложенных друг в друга кубических гранецентрированных решеток из ионов Na+ или Сl-, кубическая решетка флюорита, слоистая решетка молибденита, гексагональная и тригональная решетки кварца, тригональная решетка кальцита.

Определитель минералов - img_2.png

Рис. 3. Полость рудной жилы в разрезе.

Определитель минералов - img_3.png

Многообразны типы кристаллических решеток у сульфидов и окислов. Особый интерес с точки зрения их структуры представляют силикаты, преобладающие в составе горных пород, и среди них в первую очередь такие, как полевые шпаты, слюды, оливин, пироксены, амфиболы. В составе этих минералов большую роль играют кремний (Si) и кислород (О). В силикатах атом кремния всегда окружен четырьмя атомами кислорода,

ТАБЛИЦА 1

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ И КРИСТАЛЛИЧЕСКИЕ РЕШЕТКИ

Самородная медь, Сu Сингония кубическая, представлена гранецентрированным кубом с плотнейшей упаковкой атомов. Атомы меди расположены по углам куба и в центре каждой грани элементарной ячейки образующими правильный тетраэдр [SiO4]4~. Каждый атом кислорода в решетке силикатов одновременно принадлежит двум разным тетраэдрам. Благодаря этому возникают сдвоенные тетраэдры, кольцеобразные замкнутые группы тетраэдров (например, у берилла — двойные кольца), а при дальнейшей группировке атомов — цепи, двойные цепи (например, у пироксенов и амфиболов), двумерные бесконечные слои и трехмерные бесконечные каркасы (например, у полевых шпатов и лейцита).

Определитель минералов - img_4.png

Галит (каменная соль), NaCl Сингония кубическая, кристаллическая структура представлена ионной решеткой. Ионы натрия (Na+, черные шарики) и ионы хлора (Сl-, белые шарики) попеременно располагаются в углах малых кубов

Определитель минералов - img_5.png

Спайный выколок галита в форме куба, замкнутая спайная форма

Определитель минералов - img_6.png
Определитель минералов - img_7.png

Флюорит (плавиковый шпат), CaF2

Сингония кубическая. Ионы кальция (Са 2+) расположены по закону гранецентрированного куба. Ионы фтора (F-) занимают центры всех малых кубов

Определитель минералов - img_8.png

Спайный выколок флюорита в форме октаэдра, замкнутая спайная форма

Определитель минералов - img_9.png

Молибденит (молибденовый блеск), MoS2

Сингония гексагональная, кристаллическая структура слоистая. Ионы молибдена (Мо 2+) и ионы серы (S-) образуют плоские сетки. Характер кристаллической решетки обусловливает совершенную спайность, параллельную базальной плоскости

Определитель минералов - img_10.png

Кальцит (известковый шпат), СаСОз

Кристаллическая решетка тригональная. Кристаллическая структура в элементарной ячейке спайного ромбоэдра состоит из ионов кальция (Са 2+) и карбонат–ионов [СОз]2-. Оба типа ионов располагаются как бы в гранецентрированных решетках

Спайный выколок кальцита, замкнутая спайная форма (ромбоэдр). Примеры: кальцит, доломит, магнезит, сидерит и др.

Определитель минералов - img_11.png

Открытая спайная форма, листоватость, свойственная слюдистым минералам. Примеры: мусковит, биотит, хлорит

Определитель минералов - img_12.png

Примеры структур силикатных минералов (анионные комплексы) На рис. (а) и (б) изображены изолированные группы кремнекислородных тетраэдров, представ–лекные двумя различными видами (а) Отдельный изолированный тетраэдр [SiO4]4 — (6) Группа из двух тетраэдров, связанных между собой общим углом, с формулой [Si207]6-

Определитель минералов - img_13.png

(в) Группа из трех тетраэдров, соединенных в кольцо, с формулой [Si3О 9]6-

(г) Группа из четырех тетраэдров, соединенных в кольцо, с формулой [Si4O12]8-

(д) Группа из шести тетраэдров, соединенных в кольцо, с формулой [Si6O18]12-

Определитель минералов - img_14.png

Многие соединения встречаются в различных структурных типах, так что разные минеральные виды обнаруживают в этом случае одинаковый состав. Такое явление называется полиморфизмом, а химически идентичные минералы, различающиеся структурой кристаллической решетки, — полиморфными модификациями, например пирит и марказит (оба имеют состав FeS2).

Рамки данного карманного справочника позволяют привести лишь ограниченные (но важные!) сведения о многообразии кристаллических форм и о специальных, базирующихся на математической теории принципах классификации кристаллов. Более подробные данные по этому вопросу читатель найдет в разделе «Кристаллографические свойства минералов», написанном д-ром В. Шмицем.

Для графических построений и в классификационных целях минералоги и кристаллографы используют кристаллографические оси и осевые системы. В зависимости от длины отрезков, отсекаемых на кристаллографических осях, и взаимного расположения этих осей различают семь осевых систем (см. приложение 1А) [В отечественной литературе употребляется термин сингония», который мы и будем использовать в дальнейшем. — Прим. перев.].

Триклинная сингония. Три оси разной длины пересекаются под косыми углами; например известково–нат–риевые полевые шпаты (плагиоклазы).

Моноклинная сингония. Две оси разной длины пересекаются под косым углом, третья ось составляет с ними прямой угол, например ортоклаз, авгит, слюда и гипс.

Ромбическая сингония. Три оси разной длины пересекаются под прямыми углами; например оливин, энста–тит, топаз, ангидрит, барит и сера.

Тетрагональная сингония. Два отрезка оси одинаковой длины пересекаются под прямым углом, третья ось перпендикулярна им, и отсекаемый на ней отрезок имеет иную длину, например рутил, циркон, касситерит и халькопирит.

Тригональная сингония. Три отрезка осей равной длины пересекаются в одной плоскости под углом 60°, третья ось перпендикулярна этой плоскости, и отсекаемый на ней отрезок имеет иную длину, например кальцит.

Гексагональная сингония. Положение осей аналогично их положению в тригональной сингонии, например кварц (высокотемпературный), берилл, апатит, снег и

лед.

Кубическая сингония. Три равновеликие оси пересекаются под прямым углом, например каменная соль, алмаз, магнетит, пирит, хромит, галенит, золото и гранат.

Для определения сингонии кристалла важным признаком является форма выделения минерала. Изомет–ричные, порой округленные зерна минерала, вкрапленные в агрегат других минералов, позволяют предположить для него кубическую сингонию. Так выглядит, например, гранат в слюдистом сланце или лейцит в фоно–литах, трахитах или базальтах. У большинства кристаллов гексагональной, тригональной, тетрагональной, ромбической, моноклинной или триклинной сингонии преобладает призматический габитус. Грани, ориентированные параллельно оси с, обычно называют призматическими. Хорошо образованные призматические грани характерны, например, для монокристаллов кварца, берилла, топаза, турмалина, кальцита, арагонита, дистена, ставролита и др. Другие формы этих сингонии могут иметь таблитчатый или пластинчатый габитус, параллельный оси с.

4
{"b":"549041","o":1}