Литмир - Электронная Библиотека
A
A
Достучаться до небес. Научный взгляд на устройство Вселенной - i_001.jpg

Дело просто в том, что третье измерение плотно скручено и слишком мало, чтобы наблюдать его при нормальных энергиях.

Поворот не в ту сторону

Несмотря на четкую классификацию масштабов в науке, многие люди, пытаясь понять сложные вещи в окружающем мире, ошибочно сокращают себе путь к истине. Иногда это выливается в слишком буквальное толкование теорий. Вообще, неверное приложение научных знаний – явление не новое. В XVIII в., когда ученые активно изучали в лабораториях магнетизм, люди, далекие от науки, придумали «животный магнетизм» – некие «жизненные токи», присущие всем живым существам. И лишь в 1784 г. французская Королевская комиссия, созданная по указу Людовика XVI (среди прочих в нее входил Бенджамин Франклин), формально опровергла эту теорию.

Сегодня подобные неверные экстраполяции часто связаны с квантовой механикой, когда ее пытаются применить на макроуровне, где ее следствия, как правило, усредняются и не оставляют измеримых следов[6]. Меня тревожит, что столько людей вокруг всерьез воспринимают идеи, высказанные, к примеру, Рондой Берн в ее бестселлере «Тайна»[7], о том, что позитивные мысли притягивают богатство, здоровье и счастье. Равно как тревожит и следующее утверждение Берн: «Я никогда не изучала физику в школе, тем не менее когда я читала сложные книги по квантовой физике, то прекрасно их понимала, потому что хотела понять. Изучение квантовой физики помогло мне глубже проникнуть в тайну на энергетическом уровне».

Еще пионер квантовой механики нобелевский лауреат Нильс Бор заметил: «Если квантовая механика не вызывает у вас легкого головокружения, значит, вы ее не понимаете». К сожалению, квантовая механика печально известна большим количеством неверных интерпретаций. Наш язык и вообще стиль мышления происходят от классической логики, которая, разумеется, не берет в расчет квантовую механику. Но это не означает, что квантовой логикой можно объяснить любое непривычное явление. Тем не менее даже без глубокого знания квантовой механики с ее помощью можно делать верные предсказания. Так, можно наверняка утверждать, что квантовая механика не имеет отношения к «тайне» Ронды Берн и ее так называемому принципу притяжения между людьми, а также далекими друг от друга предметами или явлениями. На больших расстояниях, о которых идет речь, квантовая механика не может играть такой роли. Квантовая механика не имеет отношения и ко многим другим соблазнительным идеям, которые ей нередко приписывают. Невозможно изменить ход эксперимента пристальным взглядом; квантовая механика не отвергает возможность делать достоверные предсказания, а точность измерений в большинстве случаев ограничена чисто технически и не обусловлена принципом неопределенности.

Подобные заблуждения стали главной темой удивительного разговора, который произошел у меня с Марком Висенте, режиссером фильма «Кроличья нора, или Что мы знаем о себе и Вселенной». Этот фильм – настоящая головная боль ученых: в нем утверждается, что человеческий фактор влияет на ход экспериментов. Я не была уверена в плодотворности этой дискуссии, однако времени у меня было много и его нужно было чем-то занять. Уже несколько часов я сидела на летном поле аэропорта Dallas-Fort Worth и дожидалась, пока механики выправят легкую вмятину в крыле самолета (один из членов экипажа с готовностью пояснил нам, что сначала вмятину эту сочли слишком мелкой, но потом, на нашу беду, «измерили техническими средствами»).

Было очевидно, что, прежде чем начинать разговор с Марком, необходимо выяснить, как он сам относится к своему фильму. Я была знакома с его работой по отзывам многочисленных слушателей на лекциях, часто задававших мне странные вопросы об увиденном. Надо сказать, что ответ Марка немало удивил меня. Он изменил курс на 180° и признался, что первоначально подходил к науке с предубеждением, но теперь считает свои прежние взгляды заблуждением. В конце концов Марк пришел к выводу: то, что он показал в фильме, – не наука. Возможно, рассказ о явлениях, связанных с квантовой механикой, на человеческом уровне – естественно, поверхностный, иначе просто и быть не может – устраивает многих зрителей, но это не делает его корректным с научной точки зрения.

Но даже если новые теории требуют радикально новых допущений – как, безусловно, обстояло дело с квантовой механикой, – то рано или поздно веские научные аргументы и эксперименты помогают определить их истинность. Это не волшебство. Научный метод, а также данные экспериментов, как и стремление к логичности и непротиворечивости, – надежные инструменты, позволяющие ученым выходить за пределы интуитивного понимания и повседневных масштабов и разрабатывать странные на первый взгляд теории относительно явлений иных, труднодостижимых масштабов.

В следующем разделе показано, как представление о масштабе систематически помогает объединять различные теоретические концепции в единое непротиворечивое целое.

Эффективные теории

Параметр среднего роста человека находится примерно на середине шкалы (если строить ее в степенях числа десять, т. е. в логарифмическом масштабе) между мельчайшим вообразимым размером и громадностью Вселенной[8]. Мы очень велики по сравнению с элементами внутренней структуры материи и чрезвычайно малы по сравнению со звездами, галактиками и пространством Вселенной. Все очень просто: легче всего человек «понимает» те размеры, которые может воспринять с помощью пяти чувств или простейших измерительных инструментов. Более «далекие» масштабы мы осваиваем путем наблюдений и логических умозаключений. Может показаться, что по мере удаления от непосредственно видимых и измеримых величин появляются величины все более абстрактные и трудные для понимания. Но техника вкупе с теорией позволяет нам познать природу материи в громадном диапазоне размеров.

Для любого участка этого обширного диапазона – от крохотных объектов, исследуемых в Большом адронном коллайдере, до галактик и самого космоса – сегодня имеются соответствующие научные теории. Для объекта каждого размера внутри этого диапазона и соответствующих расстояний могут действовать разные законы. Физикам приходится иметь дело с огромными объемами информации в очень большом диапазоне масштабов. Хотя фундаментальные законы физики, действующие на крупных масштабах, часто работают и на самых крохотных расстояниях, это не означает, что любые расчеты в энергетических масштабах удобно проводить с применением этих законов. Если для получения точного ответа на некий научный вопрос можно не задействовать внутреннюю структуру объекта или какие-то дополнительные обоснования, мы этого и не делаем, а применяем более простые правила.

Физика – и это одна из ее важнейших особенностей – дает нам представление о том, на каком диапазоне шкалы находятся те или иные измерения или предсказания в соответствии с доступным нам уровнем точности, и позволяет проводить расчеты сообразно этому. Прелесть такого взгляда на мир в том, что мы можем сосредоточиться на масштабе, значимом для интересующих нас объектов или явлений, выделить действующие в этом масштабе элементы, а затем вывести и применить законы, по которым эти элементы взаимодействуют между собой. Формулируя теории и проводя вычисления, ученые усредняют или просто игнорируют (иногда сами того не сознавая) физические процессы, проходящие в неизмеримо малых масштабах. Если это возможно, мы отбираем значимые – релевантные – факты и отбрасываем подробности, стараясь сосредоточиться на самом оптимальном участке диапазона. Это единственный способ разобраться в невообразимо плотном массиве информации.

Всегда имеет смысл отбросить мелочи и сосредоточиться на главном, не отвлекаясь на незначимые детали. Недавняя лекция профессора психологии из Гарварда Стивена Косслина напомнила мне, как ученые – и люди вообще – предпочитают работать с информацией. Во время эксперимента, который лектор проводил с аудиторией, он просил нас следить за отрезками, которые появлялись на экране один за другим. Отрезки имели направление (север, юго-восток и т. д.), а все вместе образовывали ломаную линию (рис. 2). Нас попросили закрыть глаза и описать увиденное. Выяснилось, что, хотя наш мозг способен удерживать в памяти лишь несколько отдельных отрезков, мы можем вспомнить гораздо более длинные последовательности, сгруппировав отрезки в повторяющиеся формы. Думая в масштабах целого, а не отдельного отрезка, мы можем удержать в памяти всю ломаную.

вернуться

6

Квантовая механика может иметь макроскопические проявления в тщательно подготовленных системах; они также могут выявиться при наборе большой статистики или при использовании самых прецизионных устройств. Однако это не мешает использовать классические теории в большинстве обычных ситуаций. Все зависит от прецизионности, как будет дальше рассказано в главе 12. – Прим. авт.

вернуться

7

Берн Р. Тайна. – М.: Эксмо; Домино, 2011.

вернуться

8

Иногда я буду использовать научную запись чисел, в которой размер Вселенной выражается как 1027 м. Это означает единицу с 27 нулями, что, конечно, гораздо компактнее, чем «тысяча триллионов триллионов». Самый маленький представимый масштаб составляет 10–35 м, т. е. число, обратное к единице с 35 нулями. Рост человека имеет порядок 1 м – это единица вообще без нулей. Таким образом, «человеческий» масштаб находится примерно посередине между двумя крайними значениями. – Прим. авт.

6
{"b":"501426","o":1}