Литмир - Электронная Библиотека

Михаил Георгиевич Мальковский, Татьяна Юрьевна Грацианова, И. Н. Полякова

Прикладное программное обеспечение: системы автоматической обработки текстов

1. Сферы применения систем автоматической обработки текстов

Системы автоматической обработки текста (т.е. переработки одного вида текста в памяти ЭВМ в другой) по выполняемым функциям (входной и выходной информации) можно классифицировать следующим образом:

Язык входного текста

Язык выходного текста

1

Естественный-1

Естественный-2

2

Искусственный

Естественный

3

Естественный

Искусственный / Естественный

4

Естественный

Естественный + { Искусственный}

К системам первого типа относятся программы машинного перевода, получающие текст на некотором естественном языке и перерабатывающие его в текст на другом естественном языке. Второй тип - системы генерации (синтеза) текстов по некоторому формальному описанию. Системы третьего типа, наоборот, перерабатывают текст на естественном языке в текст на искусственном (индексирование, извлечение смыслового содержания) или в другой текст на естественном языке (реферирование). К последнему классу отнесем программы, занимающиеся проверкой текста, написанного на естественном языке. Они в результате своей работы либо исправляют входной текст автоматически, либо формируют некоторый протокол замечаний.

Естественный язык - сложная, многоплановая система, с множеством правил, внутренних связей, имеющая отношение ко всем аспектам деятельности человека. Точность и правильность работы программ определяется глубиной анализа. Достаточно глубокий анализ пока достигается только для определенных узких предметных областей (из-за специфичности подъязыка такой области: в каждой области свои термины, специфические семантические отношения и т.п.).

Для создания систем, работающих со всем естественным языком без потери глубины анализа, в настоящий момент не хватает либо технических возможностей (быстродействия, памяти), либо теоретической базы (например, пока нет даже единой схемы достаточно полного, глубокого и непротиворечивого описания семантики естественного языка). Однако в коммерческих системах, ввиду того, что предназначаются они для большого количества пользователей, разных предметных областей, принята концепция поверхностного анализа, к тому же и производится такой анализ значительно быстрее. Дальнейшее продвижение вперед, использование естественного языка в практических областях невозможно без оснащения этих систем обширными и глубокими (с точки зрения охвата различных явлений языка) описаниями и моделями, созданными лингвистами-профессионалами.

Эта тенденция прогнозируется многими исследователями и прослеживается на примере развития АОТ-систем, уже в наши дни представляющих коммерческий интерес и использующихся при решении следующих прикладных задач:

1. Machine Translation and Translation Aids - машинный перевод;

2. Text Generation - генерация текста;

3. Localization and Internationalization - локализация и интернационализация;

4. Controlled Language - работа на ограниченном языке;

5. Word Processing and Spelling Correction - создание текстовых документов (ввод, редактирование, исправление ошибок)

6. Information Retrieval - информационный поиск и связанные с ним задачи.

Отметим, что это деление несколько условное, и в реальных системах часто встречается объединение функций. Так, для машинного перевода требуется генерация текста, а при исправлении ошибок приходится заниматься поиском вариантов словоформы и т.д.

1
{"b":"36223","o":1}