Канемана, психолога по призванию, хорошо знают и часто цитируют, хотя его имя вряд ли известно офисным клеркам и статистикам. Работу Канемана можно изложить простыми словами: путем экспериментов он обнаружил, что люди для понимания мира используют информацию, на–ходящуюся под рукой, или легкодоступную, или подразумеваемые знания, вместо того чтобы проводить длительные исследования с целью узнать больше или найти объективные и неопровержимые факты – то, что, по мнению неоклассических экономистов, делает большинство из нас. Дру–гими словами, столкнувшись с проблемой, мы собираем все, что о ней известно, прежде чем принять рациональное и взвешенное решение.
Канеман также обнаружил, что ответы на контрольные вопросы во многом зависят от того, как эти вопросы сформулированы, и совсем не обязательно от масштаба опроса. Плохие вопросы не только приводят к плохим ответам, но также, поскольку их задают, опираясь на неполное понимание, они вдвойне некорректны, дают большие отклонения и в большинстве случаев совершенно неточны.
Его третий вывод: люди не всегда правильно оценивают риск. На–пример, они склонны переоценивать вероятность ядерного взрыва, но при этом недооценивать риск попасть в автокатастрофу. Все очевидно для человека с улицы, но не для экономистов, при оценке будущего стремящихся работать по каким-то правилам и считающих, что будущее формируется на основе их представлений о том, как, по их мнению, видят его формирование люди. Другими словами, предупреждая нас о кризисе, они считают, что мы обратим внимание.
Для них (снова математика) человеческие решения принимаются соглас–но ожидаемой пользе. Это, как формулирует журнал Economist, «сумма прибылей, которые они рассчитывают получить в каждом возможном сце–нарии будущего, умноженная на вероятность воплощения сценария». Таким образом, проблема очевидна: поскольку люди придают одним сценариям больший вес, чем другим, их решения некорректны или, скорее, иррацио–нальны, а если говорить совсем просто – слишком человеческие.
Экономисты оглядываются на прошлое
Биржевые аналитики из-за своих оценок показателей и тео–рии рационального ожидания всегда упускают из виду главное – при продолжительном спросе они постоянно предсказывают спад; при росте цен они излучают оптимизм и энтузиазм, как во времена доткомовской аферы. «Экономисты бабочек» меньше смотрят на цифры и, как следствие, более точны.
«Экономика бабочек», которую Рубин называет «экономикой удов–летворения», – это сложная система, стремящаяся не оценивать то, что делает нас теми, кто мы есть, а наблюдать, как это влияет на ры–нок – эмоции, страхи, стремления, нужды, желания, мечты, поэзия, удовольствие и духовность; побуждения, которые мы хотим удовлетво–рить сегодня и сейчас, а не через неделю или через год. «Экономисты всегда предполагали, что люди на 100% рациональны в своем выборе, но если спросить кого-либо, желает ли он получить $10 сейчас или $15 через неделю, большинство опрошенных скажут, что хотят $10 сей–час, – объясняет Рубин. – А если спросить, желают ли они получить $10 через пятьдесят недель или $15 через пятьдесят одну, они выберут второй вариант. Другими словами, если сделать проблему абстрактной и отвлеченной, люди (экономисты в том числе!) с успехом применят для ее решения логику и рациональные рассуждения, но если свести проблему к точке, в которой появляется возможность получить больше средств немедленно, эмоциональная сторона берет верх».
Экономистам и маркетерам это не по нраву, считает Рубин, поэтому они предпочитают это не учитывать. Имеете ли вы дело со «свиными» фьючерсными контрактами в Миннесоте, или с ВВП Франции, или пы–таетесь обратиться к новой потребительской демографии, вот что вы на самом деле хотите сделать – предсказать человеческое поведение, противопоставить абстрактным и логическим нуждам обычные, но мощные желания и эмоции.
Мало кто из экономистов старой школы заводит об этом речь, ут–верждает Роберт Шиллер, чья книга Irrational Exuberance описывает головокружительные годы доткомов с середины до конца 1990-х как «иррациональный, самодвижущийся, самонадувающийся пузырь».
Когда пузырь лопается, спросите «как?», а не «почему?»
Пузырь и то, как он лопнул, увидели немногие, говорит Шиллер, потому что остальные продолжали смотреть «на данные, на числа, вместо того чтобы смотреть на эмоции, на психологию, на дух времени – ирраци–ональную движущую силу, преобладавшую тогда в культуре».
В этом и заключался феномен доткомов – в этом заключаются все рыночные и культурные сдвиги. Человеческое поведение. То, что застав–ляло американских и британских потребителей продолжать покупать в течение 2002 года, когда экономисты заявляли, что мы находимся в упадке после 11 сентября и впереди еще один экономический спад.
Но даже когда наступила рецессия, покупатели продолжали покупать, цены на дома продолжали расти, кредитные линии продолжали исполь–зоваться и расширяться по мере того, как потребители игнорировали информацию бизнес-изданий: дела плохи, пришло время сокращать рас–ходы. Почему? Потому что после 11 сентября, если люди беспокоились, они выражали свое беспокойство по-человечески понятным образом (только если вы человек, а не экономист), наслаждаясь, развлекаясь, живя сегодняшним днем, вместо того чтобы откладывать на завтраш–ний, до которого они могут не дожить. И это правильно, утверждает Шиллер: «Когда происходит значительное событие – это из-за того… что много факторов движется в одном направлении. Одно из моих за–мечаний к экономистам – они придают настолько большое значение точности, что, когда не могут с точностью учитывать множество раз–личных факторов, предпочитают сконцентрироваться на одном».
Пример из области финансового прогнозирования: особенно при попытках предсказать степень риска используется множество типов электронных таблиц, регрессионный анализ, или так называемые сис–темные динамические модели. Многие из них, вслед за ошибками таких финансовых организаций, как Daiwa, Sumitomo, Barings и Kidder Peabody, используются для проработки сценариев «а что, если… » – например, что произойдет с рынком, если, скажем, в системе окажется бухгалтер-жулик или мошенник либо произойдет ошибка в сложении или вычитании?
Также учитываются округленные коэффициенты – текущие фигуры в экономике, доходы с учетом инфляции на следующий год, ценность компании на фондовой бирже, ее позиция относительно конкурентов на рынке, сильные и слабые стороны ее инвесторов, сильные и слабые стороны конкурентов и так далее.
Очевидно, чем больше коэффициентов вы внесете, тем более точным получится результат, но сколько всего их нужно? Сколько требуется информации или данных (в противоположность знаниям)? И самое главное, что нам вводить? Подробности о погоде от синоптиков? О тен–денциях ежегодных отпусков? О трудовом стаже или служащих компа–нии? А как насчет их личной жизни, эмоционального состояния, куда они ходят за покупками, что они едят?
На этом месте неоклассические экономисты (или брокеры, если мы имеем дело с прогнозированием на фондовой бирже) нажмут кнопку «запустить программу» и пожалуются: «слишком много данных», многие из них «слишком иррациональны, слишком непоследовательны».
Считается, что в таких моделях прогнозирования следует придерживаться простоты, что линейность – это главное
Считается, что в таких моделях прогнозирования следует придерживаться простоты, что линейность —это главное. Что эти модели, если они рациональны и управляются экспертами, как-нибудь приведут к истине. Исключив из модели или программы человеческий аспект, вы также исключите то, что делает ее более-менее точной.
Синоптики сталкиваются с этим постоянно.
В США в марте 2001 года все говорили, что плохая погода неминуема, что ожидается снег, но не должно быть ничего похожего на бурю столетия, случившуюся в 1993-м, когда значительная часть Восточного побережья была парализована из-за трехфутовых сугробов. Однако самые мощные из погодных суперкомпьютеров предрекали худ–шее: в марте 2001-го объявлялись штормовые предупреждения, и экст–ренные службы готовились к снежной буре.