Литмир - Электронная Библиотека
A
A

На наше счастье, физика атомного ядра, возникшая всего лишь лет десять назад, указала нам источник звездной энергии, согласующийся хорошо с данными теоретической астрофизики и, в частности, с выводом о том, что большую часть массы звезд составляет водород.

Слышали ли вы о том, что водород горит? Да, водород в звездах сгорает и дает им нужное питание, но это совсем не то горение, то есть не соединение с кислородом, которое известно из простого опыта.

Горение — это химический процесс, то есть перетасовка атомов между молекулами. Но энергии химических реакций недостаточно для поддержания солнечного тепла. С другой стороны, при чудовищном жаре в недрах звезд существование молекул невозможно, они там распадаются. Там возможны только перетасовки тех составных частей, из которых образованы сложные системы, называемые ядрами атомов, когда-то считавшихся неделимыми. При температурах в миллионы градусов происходит распад не только атомов, но и их ядер и перетасовка продуктов распада, отчего образуются новые химические атомы с иными химическими свойствами. Такие перетасовки называются ядерными реакциями. Физика ядерных реакций установила, что источником энергии в звездах, в том числе и в Солнце, является непрерывное образование атомов гелия за счет атомов водорода.

Известно, что атом гелия весит приблизительно в четыре раза больше, чем атом водорода. Однако мы не получим атом гелия, сложив попросту четыре атома водорода. Прежде чем материал четырех водородных атомов создаст атом гелия, должен произойти целый ряд чудесных превращений, напоминающих сказочные превращения оборотней, и непременными помощниками и толкачами в этих превращениях оказываются атомы углерода. Но такие превращения не проходят безнаказанно: при этом выделяется и теряется энергия, а она имеет массу. Оттого-то масса атома гелия получается несколько меньше массы четырех атомов водорода. Так работает фабрика гелия в недрах гигантских звезд.

Межзвездный газ

Газ, всюду газ! Собранный в гигантские раскаленные шары, он образует бесчисленные звезды; в них сосредоточена главная масса вещества в нашей вселенной. Разреженный, холодный газ, заполняющий огромные пространства в виде газовых туманностей, обволакивающий десятки звезд, газ, образующий атмосферы планет! И все это в безвоздушном пространстве. Подлинно ли в безвоздушном?

Наши понятия о вакууме, о безвоздушном пространстве относительны. В электрической лампочке «нет воздуха», говорим мы, он оттуда выкачан. Сравнительно с комнатным воздухом там — вакуум. Но физик с помощью своих лучших насосов может так выкачать воздух из какой-либо стеклянной трубки, что по сравнению с ним пространство внутри электрической лампы кишит мириадами молекул.

Газовые диффузные туманности с их плотностью, меньшей чем одна миллиардная от миллиардной доли грамма в кубическом сантиметре, раскинулись в безвоздушном пространстве. Но и оно, как мы убеждаемся, не совершенно пусто, в нем тоже есть газ. Газ ничтожной плотности, но все же газ, и между любыми двумя звездами есть газовая среда, какой бы ничтожной плотности она ни была.

Пока свойства атомов не были хорошо изучены физиками, исключительное или, по крайней мере, преобладающее нахождение именно кальция между звездами вызывало недоумение. Потом выяснилось, что ионизированный кальций поглощает свет главным образом в тех двух своих линиях, которые находятся в легко наблюдаемой части спектра. Атомы других элементов поглощают свет либо в очень многих линиях, как, например, железо, либо в такой области спектра (ультрафиолетовой), которая недоступна для изучения из-за ее полного поглощения в нашей атмосфере. Поэтому-то линии других межзвездных атомов, если они есть, либо вообще не могут быть обнаружены, либо они менее заметны, потому что их общее поглощение разбивается на много разных поглощений — в каждой линии понемногу. Поэтому нет оснований считать ионизированный кальций единственным или преобладающим газом в межзвездных недрах, он только заявляет о своем присутствии крикливее других.

Можно все же попытаться найти и другие межзвездные газы, хотя бы слабые следы их. «Кто ищет, тот всегда найдет!» И действительно, после специальных поисков в спектрах звезд был найден межзвездный натрий, а в самые последние годы обнаружили еще титан, калий и даже железо. Кроме того, перед самой войной были найдены еще межзвездные молекулы углеводорода СН, циана CN, а также некоторые линии неизвестного еще пока происхождения. Общая плотность поглощающего межзвездного газа в несколько тысяч раз меньше плотности излучающих свет газовых туманностей. Полная же плотность межзвездного газа значительно больше и составляет не менее одной миллионной от миллиардной части одной миллиардной доли грамма в кубическом сантиметре. Если бы этот газ состоял из одного лишь водорода, то при такой плотности в 1 кубическом сантиметре содержалось бы только по одному атому, тогда как в таком же объеме комнатного воздуха их содержится 10 миллиардов миллиардов!

В действительности дело почти так и обстоит, так как водород на самом деле является главной составной частью межзвездного газа. Следующее за ним место занимает натрий, но на водород приходится 90 % всей межзвездной среды, включая космическую пыль и метеориты. На долю последних приходится, как оказывается, ничтожная доля массы всей межзвездной среды, и больше всего в них весит самый легкий из газов.

Светлые туманности, то тут, то там видимые среди звезд и состоящие из газов, также светятся благодаря воздействию со стороны звезд, но в данном случае мы наблюдаем процесс так называемой флюоресценции. Для того чтобы газовая туманность светилась, необходимо, чтобы ее освещали очень горячие звезды. Среди таких газовых туманностей, свечение которых вызывается находящейся в них хотя бы слабой, но чрезвычайно горячей звездой, существуют так называемые планетарные туманности, имеющие вид небольшого правильного шаровидного облачка.

Ленинградские астрономы В. А. Амбарцумиан и В. В. Соболев разработали теорию переноса энергии, испускаемой звездой внутри подобной туманности. Кроме того, они теоретически обосновали явление постепенного расширения шаровидного облачка туманности под действием давления света. Их теории лежат в основе всех современных теоретических исследований такого рода образований.

Звёздный мир - i_014.jpg
Планетарная газовая туманность.

Расстояния до таких планетарных туманностей долгое время представляли полную загадку. Нам удалось найти метод определения этого расстояния, что позволило также установить размеры туманностей и истинную силу света звезд, вызывающих их свечение. Оказалось, что звезды, вызывающие свечение планетарных туманностей, имеют примерно такую же силу света, как Солнце, но нагреты они гораздо сильнее. Их температура составляет от 30 до 140 тысяч градусов. Размеры таких туманностей колеблются от размеров, в сотни раз превосходящих расстояние от Земли до Солнца, до размеров, превосходящих это расстояние в десятки тысяч раз.

Пыль в межзвездном пространстве

Подобного рода исследования истинного распределения звезд в пространстве чрезвычайно затруднены тем, что межзвездное пространство не вполне прозрачно. До 1930 года большинство ученых было убеждено в том, что в пространстве между звездами нет никакой среды, которая бы вызывала заметное поглощение звездного света. Поэтому при определении расстояния до какой-либо звезды пользовались известным законом ослабления блеска источника света пропорционально квадрату расстояния до него.

Другими словами, при удалении источника света в два раза его видимый блеск убывает в 2×2, т. е. в 4 раза; при удалении в 3 раза — убывает в 3×3, т. е. в 9 раз, и т. д.

Это положение, справедливое в случае совершенно прозрачного пространства, оказывается неправильным в случае наличия поглощающей среды. Поглощающая среда ослабляет свет далеких звезд, и они кажутся нам слабее, чем должны были бы казаться в случае отсутствия этого поглощения. На то, что пространство между звездами не вполне прозрачно, указывал еще сто лет назад выдающийся русский ученый В. Я. Струве. Но его идем не были в достаточной мере оценены современниками. Американский ученый Шэпли доказывал, например, что, судя по его, Шэпли, измерениям суммарной яркости и видимых размеров шаровых звездных скоплений, находящихся от нас очень далеко, пространство совершенно прозрачно.

12
{"b":"282496","o":1}