Литмир - Электронная Библиотека
Содержание  
A
A

При создании устройств для контроля этих деталей использовали то обстоятельство, что закаленная сталь поглощает из переменного магнитного поля гораздо больше энергии, чем незакаленная. Испытуемая деталь помещается в магнитное поле катушки индуктивности. Контрольный стрелочный прибор показывает непосредственно толщину закаленного слоя.

До внедрения такого способа приходилось в каждой партии разламывать несколько штук осей и по силе, необходимой для разрушения, судить о качестве изделия. Кроме того, что сломанные оси уже нельзя было использовать, этот способ проверки имел другой существенный недостаток: он был не вполне достоверным, так как основывался на предположении, что качество всех осей в партии одинаково.

Электронные приборы могут не только контролировать качество продукции, но и активно «вмешиваться» в производство. В цветной металлургии, например, применяются электронные металлоискатели и так называемые самородкоулавливатели.

В дробилки, предназначенные для дробления руды, нередко попадают куски металла и металлические предметы — обломки рельсов, зубила, болты и т. д. Раньше это приводило к поломкам дробильных машин. Но теперь созданы электронные устройства для обнаружения и извлечения кусков металла. Под лентой транспортера, по которому в дробильную машину подается руда, устанавливается катушка индуктивности, входящая в колебательный контур усилителя электрических колебаний. Когда к катушке приближается металлический предмет, настройка контура изменяется. Это вызывает срабатывание автоматического устройства — реле, которое включает мощный электромагнит, и последний извлекает обломок металла из руды.

По такому же принципу работают самородкоулавливатели. Они извлекают самородки золота, которые иногда попадают при промывке в отвальную породу. Электронное устройство выполняет эту задачу настолько совершенно, что «отзывается» лишь на предметы из цветного металла и не реагирует на кусочки тросов, обломки бурового и ударного инструмента и на другие железные и стальные предметы.

Подобных примеров можно привести немало. Они наглядно показывают, как глубоко проникла радиоэлектроника в современное массовое производство.

РАДИОЭЛЕКТРОНИКА ПОМОГАЕТ УЧЕНЫМ

Радиоастрономия

В течение тысячелетий люди пытливо исследовали Вселенную. Но изучать далекие миры Вселенной астрономам мешали атмосфера, окружающая Землю, и дневной свет. Атмосфера поглощает большую часть электромагнитных волн, приходящих из межзвездных пространств: часть невидимых ультрафиолетовых, инфракрасных и других лучей. В распоряжении астрономов оставалась только узкая полоска электромагнитных колебаний, относящаяся к видимому свету. Но и ею не всегда можно пользоваться: воздушные потоки вызывают мерцание звезд и ухудшают изображение, облачность и осадки нередко полностью срывают наблюдения. Солнечный свет препятствует наблюдению светил в дневное время.

Радио помогло астрономам создать принципиально новые средства исследования, приведшие к замечательным открытиям.

В начале второй мировой войны учеными было обнаружено, что радиолокационные станции, расположенные на восточном берегу Англии, не в состоянии обнаруживать самолеты противника в утренние часы, особенно если самолеты появляются низко над горизонтом. Обнаружить их мешали мощные радиопомехи неизвестного происхождения.

После изучения этого явления выяснилось, что источником радиопомех было Солнце. Позднее установили, что радиоизлучением обладает не только Солнце, но и Луна, а также межзвездный газ (например, водород) и некоторые туманности.

Земная атмосфера оказалась прозрачной не только для видимого света, но и для радиоволн. Она пропускает радиоволны длиной от 1 сантиметра до 15–20 метров. Так возникла новая наука — радиоастрономия.

За десять лет исследований радиоастрономы сделали уже много открытий. Наблюдая радиоизлучение Солнца, ученые установили, что оно содержит радиоволны от нескольких миллиметров до 10–15 метров и достигает наибольшей величины в годы максимума солнечной деятельности.

Большой научный интерес имеет открытие невидимого источника радиоизлучения — межзвездного газа водорода. Оно обнаружено на волне 21 сантиметр. Изучая его, ученые узнают свойства и характер движения межзвездной среды, ориентировочно определяют количество водорода в различных звездных системах.

Своими достижениями радиоастрономия в значительной степени обязана радиолокации, которая не только дала в распоряжение ученых высокочувствительные радиоприемные устройства, но и позволила с большей точностью измерить расстояния до небесных тел.

В 1946 году в Венгрии и в США с помощью радиоволн было произведено точное измерение расстояния до Луны: антенна радиолокатора, изображенная на рис. 10, послала мощный радиоимпульс на Луну.

Радиоэлектроника в нашей жизни - i_012.jpg

Рис. 10. Антенна радиолокатора, с помощью которой была осуществлена радиолокация Луны.

Через 2,56 секунды этот радиосигнал, пройдя путь в 384 тысячи километров до Луны и столько же обратно, был принят чувствительным радиоприемником.

Большую роль играют радиолокационные методы исследования метеоров. Интересные наблюдения этого явления были сделаны, например, в ночь на 10 октября 1945 года во время «метеорного дождя». Радиолокаторы позволяют наблюдать метеоры как ночью, так и днем, и получать данные о скорости метеоров, орбитах метеорных потоков[5] и т. д.

Радиоастрономические приборы — это сложные и нередко большие по размерам устройства, построенные по последнему слову радиоэлектронной техники. На рис. 11 показан один из крупнейших в мире радиотелескоп, построенный в 1956 году в Советском Союзе.

Радиоэлектроника в нашей жизни - i_013.jpg

Рис. 11. Один из крупнейших в мире советский радиотелескоп.

Радиоспектроскопия

В научно-исследовательской работе широко применяется спектральный анализ. Сущность его заключается в следующем: белый свет, проходя через прозрачную стеклянную призму, разлагается на ряд составляющих цветов, образуя спектр. Этот спектр состоит из лучей красного, оранжевого, желтого и других цветов. Если на пути светового луча, кроме призмы, помещать пленки различных веществ, то в спектре появятся темные линии или полосы. Это результат поглощения веществом световых волн определенной длины. По расположению и ширине линий и полос в спектре ученые судят о составе исследуемого вещества[6].

Радиоспектроскопия основывается также на принципе поглощения веществом электромагнитных волн. Только она использует не световые волны, а радиоволны длиной 0,7–2 сантиметра, а в некоторых случаях и больше.

Через исследуемое вещество, например через газ, пpoпускаются радиоволны меняющейся длины. Для каждого вещества длина волны поглощения различна. Поэтому, по показанию точного измерительного прибора, отмечающего момент наибольшего поглощения радиоволн, определяют исследуемое вещество.

В настоящее время методами радиоспектроскопии исследовано несколько сот сложных веществ. При этом был определен целый ряд важных величин, например расстояния между атомами, что имеет большое значение для раскрытия химических связей веществ.

Радиоизлучение межзвездного водорода, о котором мы говорили выше, было обнаружено при помощи методов радиоспектроскопии. Были получены ценные данные о концентрации космического водорода, о его движении и о распределении в пространстве.

Радиоспектроскопические методы начинают все шире применяться для определения составов различных смесей газов. Они позволяют не только определить, из каких газов состоит смесь, но и найти процентное содержание каждого газа. Преимущество этих методов в том, что контроль можно производить непрерывно в течение всего времени химического процесса.

вернуться

5

О метеорах и метеорных потоках см. брошюру «Научно-просветительной библиотеки» Гостехиздата: Е. А. Кринов, Небесные камни.

вернуться

6

О спектральном анализе рассказывается в брошюре «Научно-популярной библиотеки» Гостехиздата: С. Г. Суворов, О чем говорит луч света.

9
{"b":"280886","o":1}