Литмир - Электронная Библиотека
A
A

– И какова же вероятность?

– Примерно пятьдесят к одному, сэр.

Волшебники облегченно расслабились.

– Ну, выглядит действительно довольно безопасно. По крайней мере на лошадь я бы при таких шансах не поставил, – сказал Главный Философ.

Когда ты обнаруживаешь два дюйма льда на внутренней поверхности стекол в своей спальне, у тебя формируется совсем новый взгляд на риск.

Глава 2

Наука на площадке для сквоша

ПЛОЩАДКУ ДЛЯ СКВОША МОЖНО ИСПОЛЬЗОВАТЬ ДЛЯ ТОГО, чтобы заставить вещи двигаться куда быстрее, чем маленький резиновый мячик…

2 декабря 1942 года на площадке для игры в сквош, расположенной под трибунами футбольного стадиона Стэгг-Филд Чикагского университета, началась новая технологическая эра. Эта технология была дочерью войны, однако ее результатом мало-помалу стала практическая невозможность новых мировых войн[5]. В Стэгг-Филде группа ученых под руководством итальянского физика Энрико Ферми впервые провела самоподдерживающуюся цепную ядерную реакцию. Так родилась атомная бомба, но не только, еще началось использование атомной энергии в мирных целях. Впрочем, были и другие последствия: произошел расцвет Большой Науки и возник новый технологический стиль.

Конечно, пока на стадионе Стэгг-Филд работал реактор, никто там в сквош не играл. Люди, работавшие на площадке, очень напоминали Думминга Тупса: ими двигало ненасытное любопытство, перемежающееся мучительными сомнениями, окрашенными ужасом. В общем, все началось с любопытства, а закончилось ужасом.

В 1934 году, после череды физических открытий, связанных с феноменом радиоактивности, Ферми обнаружил, что происходит интересная вещь, если бомбардировать различные субстанции так называемыми медленными нейтронами, то есть субатомными частицами, производимыми радиоактивным бериллием и пропущенными через парафин, чтобы их замедлить. Оказалось, что медленные нейтроны заставляют эти субстанции излучать собственные радиоактивные частицы. Это выглядело любопытно, и Ферми принялся облучать потоком медленных нейтронов все, что только приходило ему в голову. В том числе и весьма таинственный в ту пору химический элемент уран, использовавшийся в основном для получения желтого красителя. Внезапно, словно благодаря алхимической реакции, облученный медленными нейтронами уран превратился во что-то совершенно новое. Только Ферми никак не мог понять во что.

Четыре года спустя трое немцев – Отто Ган, Лиза Мейтнер и Фриц Штрассман – повторили эксперимент Ферми. Они были куда лучшими химиками, чем он, и выяснили, что же происходило с ураном. Словно по волшебству уран превращался в смесь бария, криптона и кое-чего еще. Мейтнер заметила, что процесс ядерного распада сопровождается значительным выбросом энергии. Каждый знает, что химики могут превратить один тип материи в другой, однако в случае с ураном произошло нечто невиданное: материя трансформировалась в энергию. Теоретически это уже было предсказано Альбертом Эйнштейном в его знаменитой формуле, которую Орангутанг-Библиотекарь[6] Незримого университета сформулировал бы как «У‑ук»[7].

Согласно формуле Эйнштейна, количество энергии, содержащейся в определенном количестве материи, равно массе материи, помноженной на скорость света, а потом еще раз помноженной на скорость света. Как заметил Эйнштейн, скорость света настолько велика, что кажется, будто он и вовсе не движется. То есть скорость света и без того чудовищна, а если в квадрате – то просто огромна. Другими словами, из малюсенького кусочка материи вы можете получить гигантское количество энергии, если только сумеете ее извлечь. И вот Мейтнер открыла этот фокус.

Неизвестно, может ли одна-единственная формула повлиять на продажи, но в том, что она может изменить мир, мы абсолютно уверены.

В январе 1939 года Ган, Мейтнер и Штрассман опубликовали результаты своих исследованой в британском научном журнале «Nature». Девять месяцев спустя Великобритания вступила в войну, которая закончилась именно применением результатов этого открытия на практике. Горькая ирония заключается в том, что величайший научный секрет Второй мировой войны был доступен всем еще до того, как она началась. Этот факт является великолепной демонстрацией того, насколько политики иногда не придают значения потенциалу Большой Науки, положительному или отрицательному – неважно.

А вот Энрико Ферми мгновенно понял, как можно использовать выводы из статьи в «Nature». Он обратился за помощью к другому первоклассному физику, Нильсу Бору, который выдумал новый трюк: цепную реакцию. Оказалось, что если один из редких изотопов урана, а именно – уран‑235 бомбардировать медленными нейтронами, то он не просто распадется на другие элементы и будет излучать энергию, но и начнет испускать новые нейтроны. Которые, в свою очередь, принимаются бомбардировать уран‑235… Такая реакция могла бы стать самоподдерживающейся и сопровождаться гигантским выбросом энергии.

Оставался вопрос, сработает это или нет? Можно ли подобным способом превратить ничто во что-нибудь? Обнаружилось, что проверить гипотезу совсем непросто: уран‑235 в чистом виде не встречается, он всегда смешан с обычным ураном, то есть с ураном‑238. Выделить его было все равно что искать иголку в стоге сена.

Стоило волноваться еще кое о чем. В частности, если эксперимент увенчается успехом, то не выйдет ли так, что цепная реакция затронет не только уран‑235, но и все, что только ни есть на Земле? Вдруг загорится сама атмосфера? Расчеты показывали: скорее всего, нет. Ко всему прочему существовала опасность, что в деле расщепления атомного ядра союзников опередит Германия. А выбор между вероятностью взорвать весь мир самим или позволить это сделать врагу представляется совершенно очевидным.

Хотя если хорошенько подумать над этой фразой, то становится немного грустно.

Локо – это анаграмма названия местечка Окло на юго-востоке Габона, где расположено месторождение урана. В 70‑х годах ХХ века французские ученые обнаружили, что либо часть этого урана подверглась необычайно сильной цепной реакции, либо он старше всей нашей планеты.

Кое-кто даже выдвинул тогда предположение, что это – археологическое свидетельство некой предшествующей цивилизации, овладевшей атомной энергией. Более разумная, хотя и куда более скучная гипотеза заключается в том, что Окло – своеобразный «природный реактор». По какой-то случайности часть залежей урана оказалась богаче ураном‑235, чем обычно, и спонтанная цепная реакция продолжалась сотни тысяч лет. Природа просто опередила науку, и никакая площадка для сквоша ей не потребовалась.

Если, конечно, месторождение не является все-таки реликтом давно исчезнувшей цивилизации.

До 1998 года природный реактор в Окло представлялся наилучшим доказательством того, что ответ на вопрос «А что, если?..» может оказаться не очень интересным. Вопрос, собственно, заключался в следующем: «А что, если никаких физических констант вовсе не существует

Дело в том, что научные теории обычно основываются на различных числах, так называемых «фундаментальных константах». Например, скорость света, постоянная Планка (основная константа квантовой механики), гравитационная постоянная (используемая в теории гравитации), заряд электрона и так далее. Общепринятые научные теории предполагают, что значения этих постоянных неизменны с момента зарождения Вселенной. Расчеты, касающиеся первых моментов существования Универсума, основываются на предположении, что эти самые значения одинаковы всегда и везде. Потому что, если бы это было не так, мы бы просто не знали, какие именно цифры подставлять в формулы. Все равно что пытаться подсчитать подоходный налог, не зная ставки.

И все-таки время от времени раздаются голоса отдельных несознательных ученых, вопрошающих: а если допустить возможность, что одна или даже несколько фундаментальных констант таковыми отнюдь не являются? Физик Ли Смолин даже выдвинул идею «размножающихся вселенных», согласно которой у «отпрысков» появляются другие фундаментальные константы. Смолин полагает, что наша родная Вселенная необычайно «плодовита» в этом смысле, а кроме того прекрасно подходит для развития жизни. Причем соединение этих двух функций отнюдь не случайно, утверждает он. Волшебники Незримого универститета, кстати, приняли бы подобную теорию на ура, ведь хорошо развитая физика практически неотличима от магии.

вернуться

5

Или, по крайней мере, они будут не слишком радиоактивны. Во всяком случае, мы на это надеемся.

вернуться

6

Он пострадал во время магического несчастного случая, что, впрочем, только улучшило его жизнь. Хотя вы же и так об этом знаете.

вернуться

7

Считается, что всякая формула моментально сокращает продажи научно-популярных книг по меньшей мере наполовину. Но все это враки. Если бы это было так, то продажи «Нового разума короля» Роджера Пенроуза составили бы не более одной восьмой экземпляра, тогда как на самом деле их было продано сотни тысяч. Но на всякий случай (а вдруг в этом поверье есть хоть крупица истины?) мы дадим формулу именно в виде «У‑ук», в надежде что это удвоит наши будущие тиражи. Ведь вы все равно знаете, какую формулу мы имеем в виду. А если даже подзабыли, то всегда сможете ее найти на странице 151 «Краткой истории времени» Стивена Хокинга. Если легенда не врет, получается, Стивен мог бы продать в два раза больше книг, – ух, даже голова закружилась от такой перспективы!

4
{"b":"273766","o":1}