При анализе работы механических часов мы указали, что зубчатый механизм передает значительную энергию груза или пружины. Поэтому колеса тех часов находились друг с другом в постоянном зацеплении, а постоянное давление в опорах вызывало значительное трение, что вело к изнашиванию соприкасающихся поверхностей. У электрических и электронных часов роль передаточного механизма аналогична, но в отличие от механических часов они передают лишь показание времени, а не усилие пружины. Таким образом, зубчатые колеса и опоры в электрических и электронных часах испытывают значительно меньшую нагрузку, а потому обладают значительно большим сроком службы.
Итак, электрические или электронные часы. Пора выяснить различие между этими двумя типами часов. У электрических часов дозировкой энергии, необходимой для их хода, управляет электрический контакт механического типа. Передаточный механизм является простым механическим редуктором, осциллятором в обычных случаях бывает баланс. Переход от электрических часов на электронные характеризуется заменой сравнительно мало надежного электрического контакта электронным полупроводниковым элементом — транзистором. Функции остальных элементов электрических и электронных часов с балансовыми осцилляторами, по существу, аналогичны.
Важным и притом весьма чувствительным элементом каждых электрических часов является контактный механизм, отпирающий и прерывающий электрическую импульсную сеть. При отпирании этой цепи начинает проходить ток через катушку и в ней и вокруг нее возникает магнитное поле. Если это поле своими силовыми линиями пересекает ферромагнитное ярмо на балансе, то возникает силовой импульс, необходимый для поддержания постоянной амплитуды осциллятора. Импульсная система должна иметь либо стационарную катушку и ферромагнитное ярмо на осцилляторе, либо, наоборот, обмотка катушки должна быть закреплена на балансе, а ферромагнитное ярмо должно быть неподвижным. Во втором случае волосок баланса выполняет двоякую функцию: он действует, создает, как в механических часах, возвращающий момент и одновременно соединяет электрически катушку с Другими элементами электрической схемы часов. Ярмом бывает постоянный магнит, чаще всего ферритовый. Его собственное магнитное поле складывается с полем катушки, в результате чего возникает притягивающая или отталкивающая сила. Импульсный характер этой силы достигается кратковременным переключением контактов.
Недостатки электрических контактных схем в часовом деле совершенно ясны. Поэтому уже вскоре после 1950 г. стали проделывать многочисленные эксперименты по бесконтактному управлению балансовыми осцилляторами в малогабаритных часах. Удовлетворительным решением явилось только применение полупроводниковой техники, при которой транзистор полностью заменил несовершенное и ненадежное механическое контактное устройство.
С начала первых экспериментов возникла обширная серия типов электрических и электронных схем поддержания колебаний балансовых осцилляторов. По способу передачи энергии от источника на осциллятор можно подразделить эти системы на две основные группы, а именно системы с электродинамическим приводом и системы с электромеханическим приводом. Электродинамический принцип успешно использован для стационарных электрических часов еще в конце прошлого века[19]. Для наручных часов эту систему впервые использовала в 1957 г. американская фирма «Гамильтон Уотч Компани», а теперь эту систему можно видеть в часах марки «Рула», «Таймекс», «Лейчер» и т.д. Электромагнитный привод отличается от электродинамического тем, что его катушка содержит ферромагнитный сердечник, концентрирующий магнитные силовые линии. Ярмо же изготовляется из магнитного мягкого материала. Электродинамическим системам часто отдают предпочтение потому, что они меньше поддаются вредным влияниям посторонних магнитных полей.
Электронные схемы современных балансовых наручных часов имеют много вариантов, но все они выполняют роль того или иного электронного ключа.
Интересное решение предложила известная электротехническая фирма «Филиппе» в Эйдховене, Голландия. Излучение небольшого количества радиоактивного вещества, нанесенного на баланс, воспринимает особый миниатюрный встроенный приемник, который трансформирует это излучение в электроэнергию, приводящую в действие балансовый осциллятор непосредственно через транзисторный усилитель.
Не менее интересный принцип, основанный на магнитострикционном явлении, использовала швейцарская фирма «Баэни Сосайте Аноним». Под магнитострикцией понимается изменение размеров ферромагнитного вещества (в данном случае волоска часов) в результате намагничивания его. Под действием магнитного поля изменяется кривизна волоска и происходит угловой поворот его витков, придающий силовой импульс балансу. Однако магнитострикционные материалы имеют весьма неустойчивый модуль упругости, что вызывает колебания возвращающей силы волоска, сопровождающиеся значительным изменением продолжительности времени колебания баланса.
Трудности со стабилизацией амплитуды привели к попыткам заменить волосковые осцилляторы крутильными осцилляторами, где обычный волосок заменили две несущие цилиндрические витые пружины. Опоры оси баланса здесь, собственно говоря, отпадают, и для них остается второстепенная роль предохранителя при резких сокращениях и ударах. В некоторых случаях удалось вместо цилиндрических витых пружин использовать торсионные пластины формы V, Y или X.
Электронные часы с механическим камертонным осциллятором
В 1961 г. американская фирма «Булова Уотч Компани» выпустила на рынок новый тип наручных часов марки «Аккутрон», решение которых вышло за рамки концепций ранее выпускавшихся электрических и электронных систем сразу в нескольких отношениях. Эти часы имели совершенно новый осциллятор в виде маленького камертона с длиной 25 мм. Частота камертона 360 Гц была для часовых осцилляторов того времени необычно высокой. Постоянство частоты поддерживалось электронной схемой, видной по рис. 37.
Рис. 37. Схема электронных часов с камертонным осциллятором: 1 — постоянные магниты, 2 — катушка привода, 3 — вспомогательная катушка для обратной связи, 4 — конденсатор, 5 — сопротивление для настройки рабочей точки, 6 — источник, 7 — толкатель, 8 — храповое колесо, 9 — фиксатор
Обе консоли камертона имели встроенные постоянные магниты. Работу этих часов можно описать следующим образом: при прохождении тока через катушку привода попеременно притягиваются и отталкиваются несущие втулки магнитов из мягкого железа. При колебании ветвей камертона в катушке возникает переменный ток, который передает камертону импульсы в те моменты, когда сила притяжения или отталкивания магнитов действует в фазе с колебаниями камертона. Синхронизацию обеспечивает вспомогательная обмотка на одной из двух катушек[20]. Главный контур тока образуется обмоткой этой катушки, а другая катушка соединена последовательно. Вторичный контур со вспомогательной синхронизационной обмоткой и элементом RC соединен с главным контуром транзистором. Питание обоих контуров обеспечивается миниатюрным ртутным элементом напряжением 1,3 В, который при потребляемой мощности в 8 мкВт способен обеспечивать работу часов в течение целого года.
Точность этих часов примерно на порядок, почти в 10 раз больше, чем точность прежних высококачественных наручных часов. Погрешность часов составляет около ±1 мин в месяц.
Изобретателем «Аккутрона» был швейцарец Макс Хетцель. В сотрудничестве с американцем В.О. Беннетом нью-йоркская фирма «Булова Уотч Компани» стала производить эти часы серийно. В настоящее время часы «Аккутрон» производит по лицензии и ряд других фирм под названием «Юнисоник 52», «Электроник F 300», «WIC Электроник» и т.д.[21]