Николсон, с которым Бор встретился во время своего бесплодного пребывания в Кембридже у Томсона, не произвел на него впечатления. Он был всего на несколько лет старше Бора (Николсону был тридцать один год) и недавно получил место профессора математики в Университетском колледже Лондона. Николсон тоже занимался построением собственной модели атома. Он считал, что на самом деле все элементы суть комбинации четырех “примитивных атомов”. Каждый из этих “примитивных атомов” состоит из ядра, окруженного электронами, образующими вращающееся кольцо. Число электронов в каждом из них разное. И хотя, по словам Резерфорда, Николсон устроил из атома “ужасную мешанину”, именно в его работе Бор отыскал второй ключ к разгадке мучившей его тайны. Это было физическое объяснение сущности стационарных состояний, то есть причины, по которой электроны могут располагаться только на определенных орбитах вокруг ядра.
Тело, двигающееся по прямой линии, обладает импульсом. Импульс есть масса тела, помноженная на его скорость. Электрон, двигающийся по кругу, обладает так называемым угловым моментом. Обозначим его буквой L. Он равен массе электрона, помноженной на его скорость и на радиус орбиты: L = mvr. В классической физике нет ограничений на величину углового момента электрона (или какого-либо другого двигающегося по кругу тела).
Прочитав статью Николсона, Бор обнаружил, что, как утверждал бывший коллега из Кембриджа, угловой момент кольца электронов может меняться только на величину, кратную h/2π. Здесь h — постоянная Планка, а π — хорошо известная из математики постоянная, равная 3,14...17. Николсон показал, что угловой момент вращающегося кольца электронов может меняться только на h/2π, или на 2 (h/2π), на 3 (h/2π) и так далее до n (h/2π), где n — целое число. Для Бора это был один из искомых ключей к проблеме стационарных состояний. Разрешены только такие орбиты, на которых угловой момент электрона равен целому числу n, помноженному на h и деленному на 2π. Пусть числа n = 1,2,3 и так далее генерируют стационарные состояния атома, в которых электрон не испускает излучения и, следовательно, может сколь угодно долго вращаться вокруг ядра. Все другие орбиты, нестационарные состояния, запрещены. Внутри атома угловой момент квантован. Он может принимать только значения L = nh/2π, и никакие другие.
Человек может стоять только на ступеньках лестницы, но не между ними. Точно так же, поскольку орбиты электронов квантованы, квантованы и энергии электронов внутри атомов. Для атома водорода Бору удалось методами классической физики вычислить энергию его единственного электрона на каждой из орбит. Набор разрешенных орбит называется энергетическими уровнями, а соответствующие им энергии обозначаются символом En. Нижняя ступенька энергетической квантовой лестницы соответствует n = 1. Когда n = 1, электрон находится на первой разрешенной орбите, в самом низком энергетическом квантовом состоянии. Его называют основным состоянием. Согласно модели Бора, в атоме водорода самому низкому уровню соответствует энергия E1, равная -13,6 эВ (электронвольт — единица измерения энергии, используемая для описания атомных процессов). Знак “минус” указывает на то, что электрон связан с ядром18. Если электрон занимает какую-либо другую орбиту, когда n не равно 1, то говорят, что он находится в возбужденном состоянии. Позднее число n было названо главным квантовым числом. Это число всегда целое. Значения n определяют стационарные состояния, в которых может находиться электрон, и, соответственно, набор энергетических уровней атома En.
Бор вычислил значения энергий стационарных состояний для атома водорода и показал, что энергия уровня n равна энергии основного состояния, деленной на n2, то есть (E/n2). Это значит, что при n = 2, в первом возбужденном состоянии, энергия равна -13,6 ÷ 4 = - 3,40 эВ. Радиус первой электронной орбиты, n = 1, определяет размер атома водорода в основном состоянии. В рамках модели Бора этот радиус, в согласии с самыми точными современными экспериментальными оценками, равен 5,3 нанометра (нм). Нанометр — единица длины, равная одной миллиардной части метра. Бор показал, что радиусы других разрешенных орбит растут как r2: если при n = 1 радиус равен r, то радиус орбиты при n = 2 равен 4r, при n = 3 он равен 9r, и так далее.
Рис. 6. Несколько стационарных состояний и соответствующие им энергетические уровни атома водорода (рисунок не в масштабе)
Тридцать первого января 1913 года Бор написал Резерфорду: “Надеюсь, скоро мне удастся отправить статью про атомы в печать. Я потратил на нее гораздо больше времени, чем предполагал, но, кажется, за последнее время мне удалось добиться существенного прогресса”19. Квантуя угловой момент орбитальных электронов, Бор смог добиться стабильности атома с ядром. Так он объяснил, почему электроны могут занимать не произвольные, а только строго определенные орбиты, то есть находиться только в стационарных состояниях. Через несколько дней после отправки письма Резерфорду Бор нашел третий, последний, ключ, позволивший ему завершить построение квантовой модели атома.
В это время Ханс Мариус Хансен, с которым Бор в студенческие годы дружил (тот был на год моложе) в Копенгагене, вернулся в датскую столицу, закончив обучение в Геттингене. Когда они с Бором встретились, тот рассказал товарищу о своих соображениях относительно структуры атома. В Германии Хансен занимался исследованиями в области спектроскопии. Он изучал поглощение и испускание излучения атомами и молекулами. Хансен спросил Бора, могут ли его идеи пролить свет на загадку образования спектральных линий. Уже давно было известно, что в зависимости оттого, испарение какого металла происходит при горении, открытое пламя меняет цвет. Оно становится ярко желтым вблизи натрия, темно-красным вблизи лития, фиолетовым вблизи калия. Еще в XIX веке было обнаружено, что каждый элемент приводит к образованию уникального набора спектральных линий: очень узких участков спектров, на которых интенсивность излучения сильно возрастает либо сильно ослаблена. Число, расстояние и длины волн спектральных линий, генерируемых атомами каждого из элементов, уникальны. Это как бы отпечатки пальцев, по которым элементы можно распознавать.
Спектры очень сложны. Различным элементам соответствует невероятно большое число разнообразных вариантов расположения и интенсивности спектральных линий. Поэтому трудно себе представить, что именно они послужили ключом к пониманию внутренней структуры атома. Всем интересно разглядывать цветной узор на крыльях бабочек, но, как сказал позднее Бор, “никто не думает, что, глядя на раскраску их крыльев, можно понять основы биологии”20. Связь между спектральными линиями и атомами была очевидна, но в феврале 1913 года Бор совершенно не представлял себе, в чем она состоит. Хансен предложил Бору взглянуть на формулу Бальмера для спектральных линий водорода. Насколько Бор помнил, он никогда о такой формуле не слышал. Более вероятно, что он просто забыл ее. Хансен записал формулу и пояснил: никто не понимает, почему она работает.
Иоганн Бальмер — швейцарский математик, преподававший в школе для девочек в Базеле и по совместительству читавший лекции в местном университете. Однажды Бальмер пожаловался коллегам, что ему нечего делать. Они, зная его пристрастие к нумерологии, рассказали о четырех спектральных линиях водорода. Заинтригованный Бальмер решил, что сможет описать все четыре линии одной математической формулой. Правда, всем казалось, что такой формулы быть не может. В середине XIX века шведский физик Андерс Ангстрем измерил с очень высокой точностью длины волн четырех спектральных линий водорода в красной, зеленой, голубой и фиолетовой областях видимого спектра. Обозначив их “альфа”, “бета”, “гамма” и “дельта”, он получил, что соответствующие им длины волн суть 656,210; 486,074; 434,01 и 410,12 нм21. В июне 1884 года, на пороге своего шестидесятилетия, Бальмеру удалось получить формулу, с помощью которой можно было вычислить длины волн (λ) каждой из этих четырех спектральных линий. Значения λ = b [т2 / (т2 — n2)], где m и n — целые числа, а b — константа, которая определяется из эксперимента. Она равна 364.56 нм.