Литмир - Электронная Библиотека
Содержание  
A
A

Все, что действительно для подводной лодки в этой аналогии, действительно и для всех живых существ: для лягушки с повернутым глазом, для девочки-волка и для каждого из людей.

Поведение и нервная система

То, что мы, наблюдая изменения в состоянии организма в окружающей среде, называем поведением, соответствует нашему описанию движений организма в той окружающей среде, на которую мы указываем. Поведение — это не то, что живое существо делает в самом себе (поскольку в живом существе происходят только внутренние структурные изменения), а то, на что мы указываем. Поскольку изменения состояния организма (с нервной системой или без нее) зависят от его структуры, а эта структура зависит от истории ее структурного сопряжения, изменения состояния организма в окружающей среде с необходимостью соответствуют среде и хорошо «осведомлены» о ней, независимо от описываемых нами поведения или окружающей среды. Поэтому адекватность поведения как конкретной последовательности движенй зависит от среды, в которой мы его описываем. Успех или неуспех поведения всегда определяется ожиданиями, которые устанавливает наблюдатель. Если бы читатель находился в пустыне и при этом совершал те же движения и принимал те же позы, которые он совершает и принимает сейчас при чтении этой книги, то его поведение было бы не только эксцентричным, но и патологическим.

Таким образом, поведение живых существ не является изобретением нервной системы и не связано исключительно с нервной системой, поскольку наблюдатель будет видеть поведение, глядя на любое живое существо в его окружающей среде. Что же касается нервной системы, то она расширяет область возможных вариантов поведения, наделяя организм необычайно подвижной и пластичной структурой. Это и станет темой следующей главы.

7. Нервная система и познание

В этой главе мы хотим рассмотреть, каким образом нервная система расширяет области взаимодействия организма. Мы уже знаем, что поведение не является изобретением нервной системы. Оно присуще любому единству, рассматриваемому в окружающей среде, где зто единство определяет область возмущений и поддерживает свою организацию в соответствии с теми изменениями состояния, которые запускают в нем возмущения.

Все это необходимо ясно представлять себе поскольку обычно мы рассматриваем поведение как нечто, присущее животным с нервной системой. Кроме того, обычные ассоциации со словом «поведение» проистекают из таких действий, как ходьба, прием пищи поиск и т д. Если мы попытаемся выяснить, что общего у всех зтих видов активности, обычно ассоциируемых с понятием «поведение», то обнаружим, что все они так или иначе связаны с движением Но движение, будь то движение на суше или в воде, присуще далеко не всем живым существам. Среди многих форм, порождаемых естественным дрейфом, существует немало таких, которым движение не свойственно.

Естественная история движения

Рассмотрим в качестве примера растение на рис. 37. Когда стрелолист растет вне воды, он принимает форму, изображенную в верхней части рисунка. Но когда уровень воды поднимается и растение погружается в воду, его структура в течение нескольких дней изменяется и трансформируется в водную форму, которая изображена в нижней части рисунка. Ситуация обратима; происходящие структурные преобразования отличаются большой сложностью и связанны с определенным типом дифференциации, затрагивающей различные части растения. Этот случай мы могли бы описать как поведение, поскольку речь идет о структурных изменениях, которые выглядят как видимые изменения формы растения, призванные компенсировать повторяющиеся возмущения окружающей среды. Но обычно такую ситуацию описывают как изменение развития растения, а не его поведения. Почему?

Сравним поведение стрелолиста с пищевым поведением амебы, которая готовится проглотить небольшое простейшее и вытягивает в его сторону ложноножки

Древо познания - image61.jpg

Рис. 37. Наземная и водная Формы стрелолиста Sagittaria sagitufoiia

Древо познания - image62.jpg

Рис. 38. Заглатывание (рис. 38). Такие ложноножки представляют собой выступы, или «пальцы», протоплазмы, образование которых связано с локальными изменениями физико-химического состава клеточной мембраны и цитоплазмы. В результате протоплазма течет в ту или иную сторону, толкая животное в соответствующем направлении — амебоподобное существо движется. Такое изменение, в отличие от того, что происходит со стрелолистом, мы не колеблясь описываем как поведение.

С нашей точки зрения ясно, что между этими двумя ситуациями существует непрерывный переход. И в том, и в другом случае мы имеем дело с поведением. Интересно отметить, что один из них (в отличие от другого) нам легче назвать поведением только потому, что у амебы мы обнаруживаем движение, тогда как стрелолист остается недвижим. Иначе говоря, между движением амебы и неисчерпаемым богатством поведения высших животных, которое мы всегда наблюдаем как разнообразные формы движения, существует непрерывный переход. Наоборот, изменения в дифференциации стрелолиста представляются нам далекими оттого, что принято понимать под движением, поскольку они происходят очень медленно, и мы видим в них только изменения формы. Вообще говоря, с точки зрения устройства и изменений нервной системы возможность движения существенна. Именно это делает историю движения захватывающе интересной. Как это происходит и почему, мы намереваемся выяснить в этой главе. Но сначала взглянем на проблему более обобщенно. Посмотрим, как проявляется движение в различных природных ситуациях.

На рис. 39 показаны размеры различных природных единств в зависимости от их способности двигаться,

Рис. 39. Зависимость между размером и скоростью движения р природе измеренной по их максимальной скорости[10]. Нетрудно видеть, что самые большие и самые маленькие природные объекты — галактики и элементарные частицы — способны совершать очень быстрые движения со скоростями порядка тысяч километров в секунду. Если мы обратимся к большим молекулам, являющимся компонентами живых существ, то их движение замедляется по мере увеличения их размеров, к тому же движутся они в вязкой окружающей среде, образованной другими молекулами. Например, многие молекулы белков, входящие в состав живых организмов, настолько велики, что их спонтанное движение незначительно по сравнению с подвижностью молекул меньших размеров.

Древо познания - image63.jpg

Именно при этих обстоятельствах (как было показано в гл. 2) возникают аутопоэзные системы; их появление становится возможным благодаря существованию многочисленных больших органических молекул. Как только образовалось много больших молекул, направление кривой резко изменяется, поскольку история клеточных преобразований приводит к возникновению таких структур, как жгутики или псевдоножки. С их помощью движение вновь заметно ускоряется, поскольку они вводят в игру силы, значительно превосходящие силы вязкости. Кроме того, когда возникают многоклеточные организмы, у некоторых из них (путем дифференциации клеток) развиваются гораздо более эффективные способности к передвижению в пространстве. Например, антилопа импала может бежать со скоростью многих километров в час, хотя сама импала гораздо крупнее, чем небольшая молекула, которая (в среднем) движется с такой же скоростью. Многоклеточные животные и подвижные одноклеточные организмы создают диапазон движений, в их размерном классе не имеющий равного в природе.

Однако не следует упускать из виду, что внешнее проявление этого типа движения не является ни универсальным, ни необходимым для всех форм живых существ. В частности, у растений, которые представляют собой одно из фундаментальных порождений естественной эволюции, движение как способ бытия по существу отсутствует. Предположительно это связано с тем, что растения поддерживают свое существование за счет фотосинтеза при условии постоянного локального поступления питательных веществ и воды из почвы, а также газов и света из атмосферы. Это позволяет им сохранять адаптацию, не нуждаясь в интенсивных или быстрых движениях в течение большей части своего онтогенеза.

вернуться

10

Bonner J. Т. The bvolution °f Culture in Animal Societies. Princeton, N.J.: Princeton University Press, 1980.

19
{"b":"269646","o":1}