Литмир - Электронная Библиотека
Содержание  
A
A
Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности - i_013.jpg
Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности - i_014.jpg

Замедление времени и сокращение длины наблюдаются симметрично, когда Бонни смотрит на Эмили и когда Эмили смотрит на Бонни. Тут и таится парадокс. Когда Эмили спускается с трапа своего звездолета, вернувшись на Землю после полета на Wolf‑359, все единодушно говорят о том, что она постарела всего на два года, а Бонни – на целых 14. Это категорически противоречит чуть ли не всему, что мы с вами только что обсуждали, потому что мы сразу понимаем, что «двигалась» именно Эмили, а не Бонни, а первое правило, которое нам внушают, заключается в том, что невозможно различить, кто двигался, а кто был неподвижен. Как же нам разрешить этот парадокс?

Мы уже познакомили вас с одним правилом, которое говорит, включились ли в действие законы специальной теории относительности или нет: чтобы специальная теория относительности заработала, нужно двигаться равномерно и прямолинейно. А чтобы расставить все по местам, мы вам скажем с определенностью: нет, Эмили двигалась иначе. Чтобы улететь от Земли, ей нужно было взлететь и набрать скорость (подвергнувшись при этом чудовищным перегрузкам из-за ускорения), а добравшись до Wolf‑359, ей пришлось сбросить скорость и развернуться, а затем – еще раз сбросить скорость, когда она садилась на Землю.

Если учитывать все эти ускорения, ничего нельзя утверждать с определенностью, и для описания происходящего нужна гораздо более сложная теория. Это видно даже из истории вопроса: Эйнштейн выдвинул специальную теорию относительности (без учета ускорений) в 1905 году, а общую теорию относительности (которая учитывает гравитацию и другие разновидности ускорения) разработал лишь к 1916 году.

IV. Можно ли развить скорость света (и поглядеть на себя в зеркало)?

Мы ушли страшно далеко от первоначального вопроса, и это никуда не годится, потому что это очень хороший вопрос – настолько хороший, что его задавал себе сам Эйнштейн. Однако вам, наверное, кажется, что мы ничуть не приблизились к ответу на него.

Au contraire![15]

Ответ будет состоять из двух частей, и одну из них вы уже готовы сформулировать (и даже уже сформулировали). Вспомним старину Рыжего и его поезд. Теперь представим себе, что поезд Рыжего едет со скоростью 90 % скорости света (или с любой другой скоростью на ваш выбор). Однако Рыжий ничего вокруг не замечает, потому что лихорадочно прихорашивается перед свиданием с красоткой Лили по прозвищу Окорочок. Не заметит ли он, глядя в зеркало на свою симпатичную физиономию, что чего-то не хватает? Нет, не заметит. Поскольку в его вагоне нет окон, а движется он равномерно и прямолинейно, нет никакого эксперимента, который показал бы ему, что он движется, а не стоит на месте. Пока зеркало движется вместе с Рыжим, он выглядит совершенно так же, как если бы никуда не ехал.

Все это прекрасно и правильно, пока Рыжий движется медленнее света, но что будет, если он движется со скоростью света? Да-да, мы понимаем, мы сами говорили, что двигаться со скоростью света никому не удастся, поэтому, вероятно, вы могли бы поверить нам на слово и тем удовлетвориться. Но зачем?

Поясним на примере. Пачкуля, завидуя успеху, который Рыжий имеет у дам, наблюдает за тем, как тот готовится к свиданию. Конечно, ему надо следить очень внимательно, ведь поезд Рыжего несется со скоростью 90 % скорости света. Трагедия происходит в тот момент, когда у Рыжего звонит мобильник (только не спрашивайте, каким образом прошел сигнал) – это Лили сообщает, что не придет. Лили говорит очень ласково, но Рыжий все равно ужасно расстроен – он хватает еще тепленькую банку фасоли и швыряет ее в переднюю стенку вагона со скоростью 90 % скорости света (с его точки зрения).

Вероятно, Пачкуля вне себя от радости, точнее, от злорадства, но это не мешает ему отметить, с какой скоростью летит банка фасоли. В годы беспечной юности он бы предположил, что фасоль летит со скоростью 1,8 с – скорость поезда (0,9 с) плюс скорость банки (0,9 с). Но он давно оставил подобные глупости.

Вспомним два факта.

1. Пачкуля видит, что часы Рыжего замедлились (в данном случае в 2,3 раза).

2. Пачкуля видит, что поезд Рыжего сжался (в данном случае опять же в 2,3 раза).

Конечно, детали тут не так уж важны, но вот что Пачкуле представляется существенным:

1) фасоли нужно гораздо больше времени, чем утверждает Рыжий, чтобы долететь от руки Рыжего до стены и расплющиться об нее;

2) фасоль пролетает куда меньшее расстояние, чем утверждает Рыжий.

Главное – то, что фасоль летит гораздо медленнее, чем говорят наши (и Пачкулины) наивные первоначальные оценки. Банка летит со скоростью не 1,8 с, а жалкие 99,44 % скорости света.

Играть в эту игру можно до бесконечности. Например, представьте себе, что на банке сидит муравей. У муравья большие планы, касающиеся царицы его муравейника, но тут она сообщает ему, что должна остаться дома, чтобы вычистить панцирь. В гневе муравей швыряет комочек пищи со скоростью 0,9 с (с его точки зрения) в сторону передней части поезда. Пачкуля, обладающий невероятно острым зрением, увидит, что крошка движется со скоростью 99,97 % скорости света.

А на крошке живет амеба, которая ждала на свидание саму себя, поскольку размножается делением, безо всякого секса… в общем, сами понимаете.

Как бы мы ни старались, сколько бы ни повторяли наши воображаемые опыты, сколько бы банок и крошек ни бросали, мы так никогда и не достигнем скорости света. Будем бесконечно приближаться к ней – и все тут.

Кроме того, чем ближе мы к скорости света, тем труднее заставлять предметы двигаться быстрее. Кажется, что разогнать предмет до скорости в 99 % скорости света требует вдвое больше работы, чем до 50 % скорости света; на самом же деле работы потребуется вшестеро больше. А для того чтобы всего-навсего разогнаться с 99 % скорости света до 99,9 %, потребуется втрое больше работы.

Итак, теперь можно поработать и над вопросом шестнадцатилетнего Эйнштейна[16]: что произойдет, если двигаться со скоростью 99 % скорости света и посмотреть на себя в зеркало? Ничего – или по крайней мере ничего особенного. Ваш звездолет будет выглядеть как обычно, ваши внутренние часы, с вашей точки зрения, будут идти как всегда. И физиономия будет все той же. Единственное, что бросится вам в глаза, – это то, что у ваших друзей, оставшихся дома, сердца, часы, корпоративные календари и прочие приборы для измерения времени замедлились в семь раз против обычного. И к тому же все предметы сплющились под воздействием неведомого фактора.

Можно сделать еще шаг вперед и задать вопрос, изменится ли что-нибудь, если посмотреть в зеркало на скорости 99,9 % скорости света. Замедление времени и сокращение длины будут чуть больше (в 22 раза, а не в 7), а так все то же самое.

Беда в том, что все эти скорости крайне близки к скорости света, но все же не дотягивают до нее. Каждое крошечное дополнительное ускорение требует все больше и больше энергии, а для того чтобы в самом деле разогнаться до с, потребуется бесконечное количество энергии. Не очень большое, просим отметить, а именно бесконечное.

Быть может, вам этого мало. Если вам удастся как-то разогнаться до скорости света (невзирая на то, что это невозможно), свет от вашего лица так и не дойдет до зеркала, а значит, вы, как заправский вампир, не увидите собственного отражения. Мало того! Сам факт, что вы не увидите своего отражения, и докажет, что вы достигли скорости света. Но поскольку вы уже точно знаете, что никто не может сказать, стоит он или движется, это лишнее доказательство, что разогнаться до скорости света невозможно.

вернуться

15

Совсем наоборот! (фр.)

вернуться

16

То есть над тем вопросом, который нам известен. Дети в этом возрасте такие почемучки…

6
{"b":"256744","o":1}