Этот подход требовал изменения и расширения символического языка алгебры: выбора символики, операций и законов, определяющих эти операции и отражающих специфику объектов исследования, — т. е. по существу создания нового исчисления. Буль писал: «Те, кто знаком с настоящим состоянием символической алгебры, отдают себе отчет в том, что обоснованность процессов анализа зависит не от интерпретации используемых символов, а только от законов их комбинирования. Каждая интерпретация, сохраняющая предложенные отношения, равно допустима, и подобный процесс анализа может, таким образом, при одной интерпретации представлять решение вопроса, связанного со свойствами чисел, при другой — решение геометрической задачи и при третьей — решение проблемы динамики или статики. Необходимо подчеркнуть фундаментальность этого принципа».
С публикацией «Математического анализа…» взгляды и блестящая интуиция этого тихого, простого человека стали ясны его друзьям — математикам, которые советовали ему поступить в Кембридж, для получения общепринятого математического образования.
Буль неохотно отверг эти предложения, потому что его родные полностью существовали на его заработок. Не жалуясь на особенности своего обучения от случая к случаю, Буль, наконец, получил небольшой перерыв в 1849 году, когда его назначили профессором математики в недавно открытом Королевском колледже.
Это назначение позволило ему посвятить больше времени «Законам мышления…» — второй его основной работе, которую он непрерывно оттачивал и усовершенствовал в течение еще 5 лет, до публикации в 1854 году.
Как писал Буль в первом параграфе книги: «Цель данного трактата:
□ исследовать фундаментальные законы тех действий разума, с помощью которых выполняются рассуждения;
□ выразить их в символическом языке исчислений и на этой основе создать науку логики и построить метод;
□ сделать этот метод непосредственно основой общего метода для выражения теории вероятностей;
□ наконец, получить различные элементы истины;
□ оценить в рамках решения этих вопросов некоторое вероятное сообщение».
И далее: «Теперь фактически исследования следующих страниц показывают логику, в практическом аспекте, как систему процессов, проведенных при помощи символов, имеющих определенную интерпретацию и подчиненных законам, основанным на этой единственной интерпретации. Но в то же самое время они показывают эти законы как идентичные по форме с законами общих символов алгебры, с одним единственным дополнением, viz».
Другими словами, в общей алгебре не выполняется, например: что каждый х тождественно равен своему квадрату — но это истина в булевой алгебре. Согласно Булю, х2 = х для любого х в его системе. В числовой системе это уравнение имеет единственное решение «О» и «1». В этом заключается важность двоичной системы для современных компьютеров, логические части которых эффективно реализуют двоичные операции.
Кроме логики, булева алгебра имеет два других важных применения. Булева алгебра применяется в натуральной алгебре. Принимая также во внимание идею «количества элементов» в множестве, булева алгебра стала основой для теории вероятностей.
Несмотря на большое значение булевой алгебры во многих других областях математики, необычайная работа Буля в течение многих лет считалась странностью. Как и Бэббидж, Буль был человеком, опередившим свое время. Это произошло раньше, чем Альфред Уайтхед и Бертран Рассел опубликовали свой трехтомник «Принципы математики» (1910–1913), в котором рассматривались вопросы формальной логики.
Заслуживает внимания и то, что на достижения Буля частично опирались математические открытия, к тому времени появившиеся в Англии, в том числе и идеи Бэббиджа. Математики обратили внимание на идею Бэббиджа о математических операциях и величинах, использующихся в них. Идея стала возможной благодаря группе британских специалистов в области алгебры, к которым принадлежал и Буль.
Буль продемонстрировал, что логика может сводиться к очень простым алгебраическим системам, после чего для Бэббиджа и его последователей стало возможным создание механических устройств, которые могли решать необходимые логические задачи.
Через год после опубликования «Законов мышления…» Буль женился на Мэри Эверест, племяннице профессора греческого языка Королевского колледжа. Счастливый брак длился в течение девяти лет, вплоть до безвременной кончины Джорджа Буля. 8 декабря 1864 года, в возрасте 49 лет, почитаемый и известный, он умер от воспаления легких.
Буль был человеком последовательным и дисциплинированным, тем не менее, он широко демонстрировал собственное видение мира в своих утверждениях. Это мощное сочетание интеллекта и интуиции в Джордже Буле воплотилось в различных математических идеях. В заключение очерка об отце булевой алгебры хотелось бы коротко рассказать о семье Буля.
Как уже упоминалось, жена Буля была племянницей Джорджа Эвереста, в 1841 году завершившего в Индии грандиозные по масштабам работы.
В честь его заслуг высочайшая вершина мира Джомолунгма в Гималаях одно время даже именовалась Эверестом. Сама Мэри, в отличие от жен многих других математиков, понимала научные идеи своего мужа и своим вниманием и участием подвигала его на продолжение исследований. После его смерти она написала несколько сочинений и в последнем из них — «Философия и развлечения алгебры», — опубликованном в 1909 году, пропагандировала математические идеи Джорджа.
У четы Булей было пять дочерей. Старшая, Мэри, вышла замуж за Ч. Хинтона — математика, изобретателя и писателя-фантаста — автора широко известной повести «Случай в Флатландии», где описаны некие существа, живущие в плоском двухмерном мире. Из многочисленного потомства Хинтонов трое внуков стали учеными: Говард — энтомологом, а Вильям и Джоан — физиками. Последняя была одной из немногих женщин-физиков, принимавших участие в работе над атомным проектом в США.
Вторая дочь Булей, Маргарет, вошла в историю как мать крупнейшего английского механика и математика, иностранного члена Академии наук СССР Джеффри Тэйлора. Третья, Алисия, специализировалась в исследовании многомерных пространств и получила почетную ученую степень в Гронингенском университете. Четвертая, Люси, стала первой в Англии женщиной-профессором, возглавившей кафедру химии.
Но наиболее известной из всех дочерей Булей стала младшая, Этель Лилиан, вышедшая замуж за ученого — эмигранта из Польши Войнича. Войдя в революционную эмигрантскую среду, она написала прославивший ее на весь мир роман «Овод». За ним последовало еще несколько романов и музыкальных произведений, а также перевод на английский язык стихотворений Тараса Шевченко. Войнич скончалась в Нью-Йорке в возрасте 95 лет, немного не дожив до столетия со дня смерти своего знаменитого отца математика Джорджа Буля.
Чарльз Бэббидж
Провозвестник эры компьютеров
Природа научных знаний такова, что малопонятные и совершенно бесполезные приобретения сегодняшнего дня становятся популярной пишей для будущих поколений.
Чарльз Бэббидж
Чарльз Бэббидж
Слова сослагательного наклонил «если бы только» связаны с жизнью и деятельностью Чарльза Бэббиджа. Если бы только он пошел немного дальше, если бы только он создал удивительные машины, которые рисовал в своих проектах. Что могло быть? Говард Айкен, который построил один из первых компьютеров, однажды заметил, что если бы Бэббидж жил на 75 лет позже, то изобретатель XIX века мог бы затмить его славу. Такие предположения всегда беспочвенны, и все же существует какая-то ужасная несправедливость — Чарльз Бэббидж был таким дальновидным и так опередил свое время!
Бэббидж жил в то время, когда существующие технологии делали трудным для конструктора компьютеров осуществление его идей. Поэтому Бэббидж не создал компьютер. После его смерти миру пришлось ждать этого изобретения еще около 70 лет. И все же его схема компьютера была настолько близка к цели, что Бэббидж стал неотъемлемой частью ранней истории компьютеров. Его по праву называют провозвестником компьютерной эры.