Литмир - Электронная Библиотека
Содержание  
A
A

Форрестер и его группа создали высокоскоростной электронный цифровой программируемый компьютер, который соответствовал веяниям времени. Он давал возможность контролировать полеты самолетов и мог быть использован при ведении военных действий. Этот компьютер мог служить не только для расчетов имитационных полетов, но и применяться в промышленности и для нужд науки. Whirlwind был самой значительной разработкой конца 40-х — начала 50-х годов, над которой работало 175 человек и на которую был затрачен один миллион долларов. Разработчики проекта находили Форрестера несколько суховатым и деловым, но испытывали большое уважение к его изобретению. Здание для Whirlwind начали сооружать в августе 1948 года. Оно заняло 2500 квадратных футов полезной площади. Работая с Whirlwind, люди ощущали себя находящимися внутри компьютера: идешь по коридору, а справа и слева находятся устройства компьютера — по четыре с каждой стороны. Whirlwind имел только 4000 электронных ламп (для сравнения, у ENIAC было 17 468). Разработка Whirlwind заняла три года, он был запущен в начале 1950 года. Whirlwind считался самым быстрым компьютером 50-х годов. Он мог сложить два 16-разрядных числа за 2 мсек и умножить их за 20 мсек. Машине "Марк-I", сделанной в Гарварде, требовалось для умножения 6 сек. Whirlwind также превосходил компьютер ENIAC.

Однако и Whirlwind был несовершенен. На 32 электронно-лучевых трубках (ЭЛТ) хранилось 2048 16-разрядных чисел. Каждый день компьютер выходил из строя на несколько часов. Память была слабым звеном — каждая ЭЛТ для хранения информации служила не более месяца и замена ее стоила тысячу долларов. Таким образом, стоимость памяти в месяц составляла тридцать две тысячи долларов.

Улучшив по мере возможности ЭЛТ для хранения информации, Форрестер обратился к другой идее — идее создания нового типа памяти.

Решение данной проблемы он видел в создании трехмерного устройства для хранения информации, поскольку оно было более компактно, представляло больше возможностей для увеличения объема хранимой информации, было менее дорогим, чем одно- или двухмерное. В 1947 году Форрестер выдвинул идею трехмерного куба, где точки пересечения были бы элементами для хранения информации. Он собирался использовать маленькие неоновые ячейки в качестве элементов этих точек пересечения, но сомневался по поводу действенности таких средств вторичной эмиссии. Впоследствии он отложил проект на некоторое время, однако в голове у него все-таки засела идея о трехмерном устройстве: "Время от времени мне не дает покоя возможность использовать другие элементы для достижения нужного результата".

Архитекторы компьютерного мира - nonjpegpng_image41.jpg

Джей Форрестер (50-е годы XX века)

Однажды весной 1949 года он просматривал журнал Electrical Engineering и наткнулся на описание разработки, названной "Дельтамакс", сделанной немцами во время Второй мировой войны для магнитных усилителей, применявшихся в танках. Теперь она была продана Америке в качестве основного материала по магнитным усилителям. В разработке "Дельтамакс" был использован постоянный ток для насыщения сердечника, чтобы можно было управлять изменениями тока. Форрестер понял, что это и есть тот другой путь, способный заставить работать нелинейные элементы в трехмерном устройстве, над которым он размышлял ранее.

Несколько вечеров Форрестер провел в хождении по улицам неподалеку от своего пригородного дома, обдумывая проблему: "Это был вызов, другой аспект идеи, попытка осмыслить, как создать систему, которая бы допускала выбор и включение соответствующих элементов".

Неделю-другую его не оставляла мысль о двухмерном устройстве. Затем он потратил еще несколько недель в поисках решения, как расширить двухмерное хранилище информации до трехмерного. И решение к нему пришло во время прогулки на лошадях на ранчо его отца в Небраске.

Вернувшись в MIT, он заказал несколько "Дельтамаксов". Эксперименты начались. Он пропускал ток через кольца, сделанные из особого материала, намагничивая их в южном и северном направлениях. В направлении на север устройство выдавало единицу, на юг — нуль. После выключения напряжения кольца возвращались в их начальное состояние. Проблема заключалась лишь в том, что у "Дельтамакса" не было нужного быстродействия и он был чувствителен к изменениям напряжения.

Позже, под воздействием Уильяма Папьяна и других разработчиков Форрестер вернулся к другой альтернативе. Он закрепил магнитные ферритовые стержни, загнутые в виде пончиков, на сетке из проводов. Каждый стержень на сетке имел свои координаты (или адрес) — такие же, как на карте. Для того чтобы прочесть или записать бинарное число на магнитную память, надо было подать напряжение на точно выбранную пару горизонтального и вертикального ряда проводов на конкретной сетке. 16-разрядный компьютер имел для каждого разряда вполне определенное место на каждой сетке. Магнитные ферритовые кольца были более быстрыми, менее дорогими и значительно проше в эксплуатации, чем "Дельтамаксы".

Магнитная память была внедрена в компьютер Whirlwind летом 1953 года, после того как испытания были закончены. Как результат, Whirlwind теперь работал в два раза быстрее, чем ранее. Но потребовалось три или четыре года, прежде чем промышленность осознала, что это самый лучший тип компьютерной памяти. "Тогда потребовались следующие семь лет, — вспоминал Форрестер с улыбкой, — чтобы убедить их в том, что они не додумались до этого первыми".

Изобретение Форрестера повысило надежность и скорость при меньшей стоимости. Начиная с начала 60-х, стоимость памяти на магнитных сердечниках постепенно уменьшалась. Эта память позволила вводить данные и команды в течение нескольких долей секунды. Память на магнитных сердечниках использовалась вплоть до конца 60-х годов, затем ее сменила полупроводниковая технология.

В 50-х годах Whirlwind стал прообразом целого ряда компьютеров, с помощью которых была создана развитая система противовоздушной обороны США — SAGE (Semiautomatic Ground Environment). С 1952 по 1956 год руководил разработкой системы SAGE Джей Форрестер.

Эта полуавтоматическая система, способная одновременно обрабатывать данные, поступающие из 23 региональных центров США и Канады, обслуживала гигантскую сеть радиолокаторов и других детекторов. В каждом региональном центре оператор набирал данные на клавиатуре, следя за экранами, на которых отображались погодные условия, траектории движения самолетов и прочая информация, необходимая для работы системы ПВО. В то же время сеть устройств ввода-вывода системы SAGE поддерживала по телефонным каналам непрерывную связь между соседними центрами, объединяя систему в неразрывное целое.

В июле 1958 года вся система SAGE была полностью внедрена и выполняла свою миссию все последующие 25 лет. Потомки компьютера Whirlwind продолжали работать в системе до 1983 года.

В 1956 году, когда стало ясно, что система SAGE принята и не нуждается в его руководстве, Форрестер решил заняться работой в другой области.

Хотя его по-прежнему ценили как пионера в области вычислительной техники, он стал также известен как ведущий теоретик в области сложных социально-экономических моделей — так называемой области системной динамики.

Форрестер отмечал, что при разработке системы SAGE он осуществлял не только техническое, но и административное руководство. Из опыта работы над этой системой он вынес убеждение, что "технический успех больше может зависеть от общей постановки дела, чем от научных достижений" и что "никакой технический опыт не может скомпенсировать плохую организацию работы".

С этим убеждением и с чувством, что "усовершенствование методов руководства является более насущной задачей", он перешел в июле 1956 года в Слоуновскую школу MIT. Форрестер объяснял, что в Слоуновской школе, конечно, использовались компьютеры, особенно для таких целей, как исследование операций и обработка административной информации. Но, по его мнению, ни одно из этих направлений "не было решающим". "Обработка деловой информации уже быстро развивалась вне стен MIT, — говорил он, — а наука об исследовании операций имела дело с простыми задачами, нежели определение способов достижения успеха или нахождение причин провала технической политики фирмы".

30
{"b":"252558","o":1}