Сама машина в этой сложной ситуации не разберется. Должен вмешаться человек, чтобы посмотреть, какие звуки доминируют в тексте и как строить дальнейшую тактику его анализа.
Хорошо, если противоречивые звуки распределятся по строфам или фрагментам произведения: к примеру, в одной строфе преимущественно «светлые» звуки, в другой — преимущественно «темные». Как в стихотворении С. Есенина «Я помню, любимая, помню». Тогда решение простое: разбить произведение на «однотонные» отрывки и рассчитывать фоносемантику для каждого фрагмента отдельно.
Например, в разных фрагментах стихотворения А. Пушкина «Я помню чудное мгновенье» явно прослеживается смена настроений. И оказывается, содержательность звучания отдельных отрывков следует за изменением эмоционального тона. Первая строфа характеризуется признаками «нежное» и «светлое» в соответствии с содержательностью доминирующих Е, Нь, Въ, М. Затем тональность меняется. Появляются минорные ноты, которые все усиливаются и охватывают три последующие строфы. Точно следуя за сменой общего эмоционально-образного содержания, меняется и значимость звукового оформлении строф. Теперь она описывается признаками «минорное», «угрюмое», «темное», а доминируют X, Г, Ж, Ы. Но в двух последних строфах вновь создается первоначальная эмоционально-образная мелодия, причем ее звучание усиливается. Возвращаются признаки «нежное» и «светлое», но их веса увеличиваются, то есть характеристики становятся более яркими, более выраженными. Это происходит за счет того, что к доминирующим звукам первой строфы присоединяются «очень нежные» и «светлые» И и ЛЬ. Как видим, такой человеко-машинный анализ тоже оказывается эффективным.
Но если противоположные настроения в ткани произведения тесно переплетены и не распределяются по фрагментам, то здесь компьютер бессилен. Он может лишь указать доминирующие звуки — и все. Проследить за переплетением этих звуков в тексте и выяснить, какую фоносемантическую роль они выполняют, может только человек.
Разговор с компьютером нужен отнюдь не для светской беседы у камина за чашкой кофе. Это лишь иллюстрация способностей машины имитировать восприятие фоносемантики. Но уже и в том виде, как она есть, программа автоматического анализа фоносемантики, фоно-символики текстов может применяться и для решения практических задач.
Например, компьютер может стать помощником переводчика. Если в тексте использован прием специальной организации фоносемантики, то переводчику неплохо бы повторить эту организацию и на языке перевода, иначе какая-то часть общей художественной информации будет неминуемо потеряна.
Дело осложняется тем, что фоносемантика имеет как универсальные для всех языков черты, так и специфические для каждого конкретного языка. Так, очень редкий для русской речи, самый «плохой» и «отталкивающий» для русских, звук X немцы таковым не считают. В их языке сходный звук встречается довольно часто. Неплохими они считают и твердые X, Ф, Ш («очень плохие» для русских), так как в немецком похожие на них звуки весьма употребительны. Или, скажем, шипящие звуки русские оценивают как «плохие», «темные», «тусклые», «шершавые», «страшные», а поляки не приписывают им отрицательных характеристик, потому что в их речи шипящие звуки очень часты, а потому привычны, обычны.
Следовательно, если в русском тексте содержательность звучания создана подбором шипящих, то при переводе на польский или немецкий нельзя просто увеличить частотность шипящих — это не приведет к нужному эффекту.
Например, звуковая организация стихотворения Блока «О весна без конца и без краю» построена на столкновении контрастных по содержательности звуков — самых «грубых» Р, Д и самых нежных Ю, И, самых «темных» X, Ы и самых «светлых» Ю, И, 3. С одной стороны, в стихотворении инструментовка на Ю, И. «узнаю, принимаю, приветствую, встречаю, любя». С другой — на X, Ы: «в завесах темных окна, колодцы земных городов, томления рабьих трудов, в змеиных кудрях, на холодных и сжатых губах». Чтобы передать эти фоно-семантические контрасты на немецком языке, нет смысла повторять инструментовку на звук X — он в немецком не имеет нужной содержательности. Необходимо в немецком найти звук, содержательность которого соответствует русскому X, и на него инструментовать «темные» и «страшные» строки.
Так что переводить приходится не само звучание, а его содержательность, для чего эту содержательность нужно знать и в языке оригинала, и в языке перевода. Вот тут компьютер может быть незаменимым помощником. Если ему сообщить данные о содержательности звуков и их нормальной частотности в нужных языках, он определит фоносемантику исходного текста, выделит доминирующие звуки, найдет соответствие им в языке перевода, а затем проконтролирует с точки зрения фоносемантики готовый перевод. Конечно, талантливый переводчик интуитивно улавливает фоносимволику оригинала и так же интуитивно выстраивает ее на новом языке. И все же машинная помощь не помешает. Пользуются же переводчики словарями. Компьютер в данном случае тоже справочник, только автоматический.
Само собой разумеется, что все это лишь тонкие семантические нюансы, не являющиеся основой перевода, но пренебрегать ими, пожалуй, тоже не следует.
Еще в одной очень важной практической области стоило бы обратить внимание на фоносемантику. Речь идет о публицистике. Выступления ораторов, средства массовой коммуникации, такие, как газеты, телевидение, радио, призваны всеми средствами повышать действенность информации, в том числе и ее воздействие на восприятие читателей и слушателей. Вполне реально было бы в необходимых случаях «просчитывать» фоносемантический ореол текстов, чтобы и этот их аспект был организован надлежащим образом и бил бы в единую с основной семантикой цель.
Уже есть опыт такой обработки рекламных текстов. Компьютеру задавались характеристики, которым должны были удовлетворять рекламные проспекты, девизы, надписи. Машина просчитала весь предложенный материал и выбрала те тексты, фоносемантика которых соответствовала заданным параметрам. Одновременно социологи опробовали тот же исходный материал на информантах и покупателях, не зная о результатах работы компьютера. И что же: мнения людей и компьютера почти во всех случаях совпали — наиболее действенной оказалась «фоносемантически заряженная» реклама. Так что компьютер уже окупает стоимость своей работы, сам зарабатывает себе на хлеб, помогая торговле увеличить выручку.
С развитием фоносемантических исследований, несомненно, обнаружатся и другие области, где этот важный аспект семантики играет свою роль.
Но для нас-то сейчас другое важно. Мы убедились, что фоносемантика активно функционирует в тексте, она вплетает свои оттенки в общий смысл живой человеческой речи, тайно, но мощно воздействует на наше подсознание, пробуждая в нем нужный эмоциональный отклик. И подумать только: столь сложный и скрытный семантический механизм языка удалось буквально вычислить и смоделировать на компьютере, который сможет теперь имитировать даже работу языкового подсознания человека!
Звукоцвет
«Мы видим звук»
После поэтических успехов компьютера он, казалось бы, уже ничем не может больше удивить. Но, оказывается, может.
Звуки речи не только наделены содержательностью по признаковым шкалам оценочного типа. Они еще и окрашены в нашем восприятии в различные цвета. Если фоносемантический ореол — атмосфера, то окраска звуков — радуга. Это те же звуки речи, но открывшиеся нам другой — яркой и поразительной своей стороной.
Свойство звуков вызывать цветовые образы было замечено давно. Много писалось о цветовом слухе А. Скрябина, который музыкальные звуки видел в цвете. Целое направление в искусстве — цветомузыка — основано на этом свойстве звуков музыки.
Есть свидетельство о том, что звуки речи, особенно гласные, тоже могут восприниматься в цвете. А. Рембо написал даже сонет «Гласные», в котором так раскрасил звуки: