Вклад Римана
В любом случае революция, начатая Гауссом, проходила в трехмерном евклидовом пространстве. Многомерные случаи были еще впереди, а пока обычная аналитическая геометрия занималась изучением координатных пространств первых трех измерений (на прямой, на плоскости и в трехмерном пространстве). Как мы уже говорили, признать существование высших измерений было нелегкой задачей для ученых и философов. Однако в середине XIX в. многомерные пространства появились как естественное продолжение аналитической геометрии. Одной из двух важных работ, связанных с этим, была статья «Главы из аналитической геометрии п измерений» английского математика Артура Кэли (1821–1895). Второй базисной работой стали «Лекции о линейном расширении» немецкого математика и философа Германа Грассмана (1809–1877).
Потом появился доклад Римана, представленный в Гёттингенском университете, «О гипотезах, лежащих в основании геометрии». Он содержал великие геометрические идеи:
1. Понятие n-мерного геометрического пространства (называемого дифференцируемым многообразием), обобщающее понятие поверхности, данное Гауссом.
2. Понятие метрического тензора, обобщающее понятие расстояния, и изучение метрических отношений на дифференцируемых многообразиях (рождение геометрии Римана).
3. Обобщение понятия кривизны и других элементов внутренней геометрии поверхности на римановы n-мерные многообразия.
Понятие n-мерного дифференцируемого многообразия включает в себя тот факт, что локально его можно определить с помощью n локальных координат x1, …, xn, а также законов их преобразований. Геометрическое пространство (дифференцируемое многообразие) необязательно связано с реальным пространством, но может быть любым объектом, в котором выполняются общие условия, заданные определением.
Более того, Риман отказался от обычного математического и философского подхода, согласно которому понятие пространства подразумевает расстояние, заданное как обычное евклидово расстояние. Этим он разделил понятия пространства (п-мерного дифференцируемого многообразия) и расстояния, называемого метрическим тензором Римана. Таким образом, в одном и том же пространстве могут существовать три расстояния, с которыми, конечно, связаны различные значения кривизны. Поэтому геометрия Римана является неевклидовой геометрией в гораздо более общем смысле, чем разработанная Лобачевским и Бойяи, так как она подразумевает большее количество измерений и ее кривизна может принимать разные значения в разных точках.
Риман также глубоко интересовался проблемами физики и попытался объединить физические силы природы — гравитационные, электрические и магнитные.
По его мнению, силы притяжения являются следствием геометрии пространства и его кривизны. Он надеялся, что введенная им новая геометрия позволит обобщить силы природы.
Его идеи являются фундаментальными для физики XX в. В частности, они заложили основы теории относительности. В 1905 г. немецкий физик Альберт Эйнштейн (1879–1955) вместе с нидерландским физиком и математиком Хендриком Лоренцем (1853–1928) и французским математиком Анри Пуанкаре (1854–1912) представил специальную теорию относительности. Вскоре после этого немецкий математик Герман Минковский (1864–1909) связал четырехмерное многообразие Римана, пространство-время, с пространственным метрическим тензором Римана, который содержал скорость света. Именно на основе этого пространства в 1916 г. была разработана общая теория относительности Эйнштейна.
* * *
БЕРНХАРД РИМАН (1826–1866)
Риман за свою короткую жизнь опубликовал всего несколько работ, зато они были исключительно высокого достоинства, так как в них он решил некоторые из наиболее сложных математических проблем. Также он ввел новые понятия и методы и кардинально изменил представление о пространстве. Он был застенчивым человеком и избегал публичных выступлений, а из-за слабого здоровья страдал частыми нервными срывами.
Детство его было скромным, что неудивительно: он был сыном пастуха, но это не помешало проявлению фантастических способностей к вычислениям и особого математического таланта. Еще в школе юный Бернхард прочитал книгу Лежандра по теории чисел, поглощая 900 страниц в неделю.
Начав учиться на факультете теологии и философии, Риман вскоре увлекся математикой, поэтому отправился изучать ее в Берлинский университет. Там он начал развивать свои идеи по теории функций комплексного переменного, написав по этой теме докторскую диссертацию под руководством Гаусса в Гёттингенском университете. В 1859 г. Риман опубликовал свою единственную работу по простым числам. Этой областью он увлекался в течение многих лет, сформулировав одну из самых известных в математике гипотез.
Карикатура на Римана авторства Херардо Басабе.
От научных кулуаров до кофейни
Красивые идеи, представленные в диссертации Римана, вскоре распространились по всем образовательным и научно-исследовательским учреждениям Европы. Многомерная дифференциальная геометрия наряду с неевклидовыми геометриями начала набирать популярность в математических и научных кругах. Исследования продолжались. В области неевклидовых геометрий строились новые модели пространств, а также предпринимались попытки сделать геометрии более последовательными, чтобы они не содержали логических противоречий. В дифференциальной геометрии здание, заложенное Риманом, продолжили строить такие известные итальянские математики, как Эудженио Бельтрами (1835–1900), Грегорио РиччиКурбастро (1853–1925) и Туллио Леви-Чивита (1873–1941), а также немецкий математик Элвин Бруно Кристоффель (1829–1900). Ученые того времени пытались применять элегантную теорию Римана, и хотя сначала это было нелегко (например, необходимо было дальнейшее развитие физики), наука XX в. показала истинное значение этой новой области геометрии.
В то же время математики и ученые начали распространять информацию о неевклидовых геометриях и геометрии Римана в академических кругах, проводя конференции, публикуя статьи в научных журналах и книгах, и мало-помалу эти идеи стали доступны широкой публике.
Одним из самых активных популяризаторов четвертого измерения был немецкий математик Герман фон Гельмгольц (1821–1894). Его статьи публиковались в Германии, Франции, Англии и США в 1860—1870-х гг.
Гельмгольц, как и некоторые из его современников, также использовал образ двумерных существ, живущих на сфере и на других поверхностях. Эти существа имеют свою собственную геометрию, отличную от евклидовой; в их геометрии, например, сумма внутренних углов треугольника не будет равна 180°. По поводу четвертого измерения Гельмгольц писал в своей работе «Популярные лекции о науке» (1881), что нам не удастся его вообразить, и приводил сравнение с человеком, который родился слепым и не может представить себе цвета.
Немецкий физик Герман фон Гельмгольц написал много работ по неевклидовой геометрии и о гипотетических многомерных мирах. Его идеи стали популярны среди широкой общественности во всем мире.
В то время как одни ученые работали над серьезными вопросами, другие решали более приземленные проблемы: как двумерные существа питаются, как устроен их кишечно-желудочный тракт, как они передвигаются, как выглядят их глаза, как устроено их зрение — эти и другие подобные вопросы, конечно, были более интересны широкой публике. В те времена выражение «четвертое измерение» стало синонимом любого многомерного пространства и понятия неевклидовой и многомерной геометрий часто отождествлялись.