Доска и фишки для игры в го. Последние традиционно называются камнями.
Положение фишек на доске в одной из партий финала чемпионата мира, прошедшего в 2002 году, где встретились Чхве Мёнхун (белые) и Ли Седоль.
* * *
Почему мы называем этот раздел искусственного интеллекта поиском, если речь идет о численной оптимизации? К поиску относятся задачи и другого типа, к примеру, так называемые комбинаторные задачи. Их решения образованы различными элементами, которые могут сочетаться между собой и порождать комбинаторное пространство. Решение такой задачи определяется оптимальным множеством элементов. Хороший пример комбинаторной задачи — шахматная партия. Оптимальным решением этой задачи будет последовательность ходов, ведущих к выигрышу.
Еще один классический пример — так называемая задача о ранце, в которой нужно уложить в рюкзак различные предметы. В этом случае решением будет совокупность предметов с минимальным общим весом и максимальной ценностью. И вновь комбинаторная задача, относительно простая для человека, часто оказывается крайне сложной для компьютера.
Одна из множества информационных систем, используемых для распознавания образов, в данном случае — для распознавания лиц. На иллюстрации изображена разработка японской компании NEC.
Обучение
Следующий раздел искусственного интеллекта — обучение. Является ли интеллектуальной система, способная обучаться на основе предшествующего опыта? Вернемся к примеру с автоматической системой диагностирования, в которую введено множество симптомов, соответствующих определенным заболеваниям. Этот процесс ввода информации, содержащей различные внутренние связи, называется обучением. После того как система обучена, она способна найти в памяти любой симптом и определить, какое заболевание ему соответствует. Обучение такой системы основано на запоминании, и ее нельзя назвать интеллектуальной. Цель обучения интеллектуальных систем — сформировать способность формулировать обобщения, то есть выводить некие правила, которые затем можно будет применить для решения новых задач.
Автоматическое обучение стало одним из самых обширных разделов искусственного интеллекта. В университетах, исследовательских центрах и компаниях ежедневно совершаются новые открытия в этой области, ведь, с одной стороны, в различных областях знаний и промышленности очень велика потребность в экспертных системах, а с другой — программировать полезные экспертные системы очень сложно.
Обучение интеллектуальной экспертной системы производится на основе последовательности случаев и соответствующих им решений. После обучения система способна выводить правила и нормы, описывающие исходные случаи, и для любого нового случая она сможет найти новое решение. Экспертную систему можно считать интеллектуальной, только если она умеет автоматически обучаться и формулировать обобщения. Иными словами, система не должна требовать ручного ввода правил, а после обучения она ведет себя подобно эксперту в своей предметной области.
Позднее мы расскажем о способах применения экспертных систем более подробно. Мы приведем несколько показательных примеров современных экспертных систем, например систем, используемых для прогнозирования просрочки платежей по ипотеке, систем раннего обнаружения злокачественных опухолей или систем автоматической классификации нежелательных электронных писем (спама).
Автоматическая классификация электронной почты с целью отделить спам от корректных сообщений — одна из областей применения экспертных систем.
Планирование
Третий крупный раздел искусственного интеллекта — планирование. Человек обладает способностью строить планы с незапамятных времен. Можно сказать, что человек и выжил-то благодаря планированию. Если мы перенесемся в палеолит, то и там встретимся с проблемой, требующей планирования: как распределить наличный объем пропитания между числом потребителей — членов племени? Кому отдать сочное мясо, богатое калориями: тем, кто собирает ягоды, или охотникам?
А если один из собирателей — женщина на последних месяцах беременности? Все эти вопросы соответствуют так называемым ограничениям системы, то есть обстоятельствам, которые следует учитывать при составлении плана.
Ограничения делятся на обязательные и необязательные. В нашем примере с доисторическим племенем лучшие куски мяса должны доставаться тем, кто больше всего нуждается в этом. Однако не случится ничего страшного, если самому сильному охотнику в один из дней не достанется самый сочный кусок. Конечно, эта ситуация не может повторяться постоянно, но уж один-то день охотник может потерпеть.
Следовательно, это необязательное ограничение.
В качестве примера обязательного ограничения приведем распределение ресурсов университета (то есть аудиторий и преподавателей) в течение учебного года. Потребителями ресурсов будут студенты, изучающие, например, математический анализ, торговое право, физику и другие предметы. При распределении ресурсов нужно учесть, что студенты, изучающие торговое право и физику, не могут одновременно занимать, например, аудиторию 455. Заведующий кафедрой математического анализа также не может преподавать торговое право, так как не имеет необходимой квалификации. В этом примере описанные ограничения являются обязательными.
Таким образом, при разработке интеллектуального алгоритма планирования важнейшую роль играет возможность или невозможность нарушить накладываемые ограничения.
* * *
ЗАДАЧА КОММИВОЯЖЕРА
Порой определенная задача может быть отнесена к тому или иному разделу искусственного интеллекта в зависимости оттого, с какой стороны мы подойдем к ее решению. Хорошим примером является задача коммивояжера (Travelling Salesman Problem, или TSP), которую можно решить путем поиска или планирования.
Формулировка этой задачи звучит так: для данного множества городов, дорог между ними и расстояний нужно найти маршрут коммивояжера, проходящий через все города. Коммивояжер не может заезжать в один и тот же город дважды и при этом он должен преодолеть наименьшее расстояние. Как читатель может догадаться, в зависимости от расположения маршрутов между городами коммивояжер обязательно посетит какой-либо город дважды, следовательно, это условие можно считать несущественным.
Пример графа городов, связанных между собой. Расстояние между городами в километрах указано на ребрах графа.
Автоматические рассуждения
Четвертый раздел искусственного интеллекта — автоматические рассуждения.
Именно они привлекают наибольшее внимание широкой публики и часто становятся главной темой научной фантастики. Тем не менее автоматическим рассуждениям как отдельной дисциплине дала начало не слишком увлекательная задача об автоматическом доказательстве математических теорем.
Часто выдвигаются новые теоремы, которые требуется доказать или опровергнуть. Доказательство теорем может быть крайне сложным. Именно это произошло с великой теоремой Ферма (согласно ей, если n — целое число, большее двух, то несуществует ненулевых натуральных чисел, удовлетворяющих равенству zn = хn + уn) — на доказательство этой теоремы ушло более 200 лет!