Литмир - Электронная Библиотека

На рис. 15–15 показаны результаты проигрывания модели с новыми руководящими правилами при синусоидальном вводе с периодом в один год. При тех масштабах величин, которые использованы при построении графиков, они кажутся весьма схожими с аналогичными графиками на рис. 15-3 для старой системы. Однако на самом деле численные значения некоторых величин существенно отличаются. Как и на рис. 15-3, что здесь, однако, не показано, только незначительная часть годового циклического ввода в технический отдел покупателя доходит до поставщика деталей. При 10-процентном изменении первоначального ввода заказы заводу в старой системе изменялись на 1,6 %; в новой системе они изменяются на 2,4 %. Несмотря на большие колебания числа заказов, изменения в численности рабочих в новой системе меньше: они составляют 2,1 против 3,2 % в старой системе. Соотношение между числом этих заказов и численностью рабочих позволяет сделать важный вывод о том, что при новых правилах колебания численности рабочих не превышают 85 % от колебаний поступающих на завод заказов, в то время как в старой системе эти колебания составляли 185 % (при годовых и сезонных колебаниях).

Основы кибернетики предприятия - _195.jpg

Рис. 15–15. Модель промышленного производства деталей электронного оборудования (новые руководящие правила, прежние параметры, синусоидальный ввод с двухлетним периодом).

При испытании модели старой системы с синусоидальным вводом, имеющим период в два года, была установлена высокая степень чувствительности системы к возмущениям с большим периодом. На рис. 15–15 представлена соответствующая реакция системы при новых руководящих правилах; приведенные графики свидетельствуют о значительном улучшении системы.

Основным результатом здесь является уменьшение колебаний числа заказов на всем протяжении их пути от покупателя до завода — изготовителя деталей. На рис. 15-4 темп заказов покупателя заводу изменялся на 107 % по сравнению с изменениями независимого ввода; на рис. 15–15 эти изменения составляют 53 %. Это объясняется уменьшением запаздывания поставок с 3,2 до 0,8 недели, что ослабляет тенденцию покупателя сначала преувеличивать число заказов, а затем уменьшать их по мере изменения запаздывания поставок. Изменение темпа заказов, поступающих от покупателя на завод, составляет примерно 50 % первоначальной флуктуации ввода, которая проникает в систему после 30-недельного запаздывания в техническом отделе покупателя. На рис. 15–15 колебания численности рабочих составляют 85 % от колебаний первоначального ввода, в то время как на рис. 15-4 она равнялась 230 %. Улучшение системы происходит по двум причинам. Как только что отмечено, темп заказов, поступающих от покупателя на завод, становится более постоянным. Далее, на рис. 15–15 колебания численности рабочих на 60 % интенсивнее колебаний поступающих на завод заказов, в то время как соответствующая величина для рис. 15-4 составляет 120 %.

Следует отметить, что улучшение системы коснулось всех переменных, изменение которых показано на рис. 15–15. Кассовая наличность изменяется от 76 до 113 % первоначального значения, в то время как на рис. 15-4 она изменялась от 5 до 150 %. На рис. 15–15 запасы изменяются в пределах от 78 до 120 % от их нормальной величины, в то время как на рис. 15-4 это изменение лежит в пределах от 73 до 132 %. Колебания запасов несколько уменьшились, но не так сильно, как у других переменных. Однако полученное изменение можно считать удовлетворительным, так как колебания запасов не являются чрезмерными.

Наиболее интересные сравнения системы со старыми и новыми руководящими правилами можно будет сделать, если ввести случайные изменения[104] в темп предоставления спецификаций покупателем. Следует сравнить рис. 15–16 с рис. 15-5. Усилившаяся устойчивость новой системы совершенно очевидна. Уравнение 14–79 суммирует все наймы и увольнения для получения общего изменения численности рабочих. Для рис. 15-5 это изменение составляет 760 человек в течение 350 недель. На рис. 15–16 соответствующее изменение составляет 482 человека. Подобное улучшение происходит и в большинстве других переменных. На рис. 15-5 кассовая наличность изменяется от 11 до 156 % от нормальной величины, а на рис. 15–16 это изменение лежит в пределах от 53 до 133 %. Максимальное отклонение запасов примерно одно и то же в обеих ситуациях. На рис. 15–16 максимум численности составляет 122 %, а на рис. 15-5—140 %.

Основы кибернетики предприятия - _196.jpg

Рис. 15–16. Модель промышленного производства деталей электронного оборудования (новые руководящие правила, старые параметры, внесение случайных изменении в исходящий поток технического отдела покупателя).

На рис. 15-5 запаздывание поставок колеблется от 3,6 до 6,4 недели, а на рис. 15–16 изменение этой величины не превышает 35 %.

15. 5. Улучшения в системе с новыми руководящими правилами

Таким образом, очевидно, что система с новыми правилами управления запасами и численностью рабочих (рис. 15–14, 15–15 и 15–16) более устойчива и менее чувствительна к возмущающим силам, чем система с прежними руководящими правилами (рис. 15-1, 15-4 и 15-5). Однако это не означает, что мы уже нашли наилучшее решение.

В разделе 14.1 (рис. 14-1) рассматриваются условия, при которых колебания запасов часто усиливают изменения численности рабочих по сравнению с кривой продаж. На рис. 15-4 старая система такова, что запасы начинают увеличиваться прежде, чем кривая продаж достигнет максимума. Это означает, что темпы производства опережают темп продаж в течение некоторого времени перед максимумом продаж и что максимум производства будет неизбежно выше максимума продаж. Правила, ведущие к накоплению запасов прежде, чем будет достигнут максимум продаж, способствуют тенденции системы усиливать возмущения в пределах двухлетнего периода. Рис. 15–15 показывает, что новые правила несколько облегчают положение. Точка минимальных запасов совпадает по времени с максимумом входящих заводских заказов. Это означает, что кривая численности рабочих, отображающая уровень производства, все еще пересекает вершину кривой входящих заказов и что ее собственный максимум наступает позднее и на более высоком уровне. В данном случае положение несколько лучше, чем на рис. 15-4, поскольку запасы в меньшей степени ухудшают его. Однако они не способствуют уменьшению колебаний численности рабочих. Наибольший эффект здесь может быть достигнут в том случае, если максимальный темп снижения запасов совпадает с наибольшим темпом входящих заказов.

Следует отметить, что на рис. 15–15 фактический диапазон колебания запасов вполне достаточен, чтобы вместить при определенных условиях все колебания входящих заказов. Другими словами, постоянный уровень численности не усилит колебания запасов в большей степени, чем это уже сделано. Кривая входящих заказов достигает максимума на уровне, превышающем средний объем продаж на 5 %. Это составляет максимум в 50 единиц в неделю сверх среднего уровня продаж. Кривая запасов на рис. 15–15 снижается со скоростью 50 единиц в неделю на ее наиболее крутом участке, и если бы эта точка совпала с пиком продаж, то за счет запасов мог бы быть удовлетворен весь избыточный спрос и поглощен весь излишек производства при минимальном уровне продаж. Мы должны стремиться к этому, однако нет основания полагать, что можно полностью достичь идеального соотношения запасов со всеми важными колеблющимися величинами.

Одним из путей лучшего использования колебания запасов является принятие правил, обеспечивающих наименьшую изменчивость численности рабочих и темпа производства. Как на рис. 15-4, так и на рис. 15–15 колебания численности в значительной мере определяются той скоростью, с которой численность рабочих приводится в соответствие с темпом продаж, а также скоростью корректировки уровня запасов. В правилах системы на чувствительность численности рабочих к изменениям продаж и запасов влияют три константы времени.

94
{"b":"245924","o":1}