Литмир - Электронная Библиотека
Содержание  
A
A

На вопрос: «Почему бывают приливы и отливы?» — часто отвечают: «Очень просто, воду океана притягивает Луна». Считают так: под Луной на океанской поверхности вырастает огромный водяной горб, а так как Земля под Луной вращается, то горб этот перемещается, дабы все время оставаться «подлунным», и набегает в конце концов на берег. Согласны?

Ответ неверен. Если бы дело происходило так, то приливы и отливы наступали бы всего один раз в сутки. А они бывают дважды в сутки.

На самом деле водяных горбов на поверхности Мирового океана два — первый действительно под Луной, а второй в диаметрально противоположной стороне. И вершина второго направлена от Луны. Оба горба сохраняют свое положение в пространстве, а Земля кружится, вот и выходит, что приливная волна дважды в сутки заливает берега.

Но почему же все-таки горбов два, а не один? И почему второй словно бы отталкивается от Луны?

Никакого отталкивания нет. Причина этого явления в том-то и состоит, что Земля вместе с Мировым океаном непрерывно падает в сторону Луны, хоть и не может «упасть», так же как и Луна не может упасть на Землю. Прямо под Луной лунное притяжение сильнее (потому что там океан ближе к Луне) и, значит, больше ускорение падения. «Подлунный» горб падает быстро. А с обратной стороны Земли океан на двенадцать тысяч километров дальше от Луны, там ее тяготение слабее, и вода отстает в падении.

Здесь я задам вам проверочный вопрос (из числа довольно трудных — на нем иногда проваливаются даже студенты-физики).

Кроме лунных, по океану бежит еще пара приливных горбов, рожденных притяжением Солнца. Они гораздо меньше, чем лунные. Почему?

Вертится на языке фраза: потому, что Солнце притягивает воду океанов слабее, чем Луна. Так и говорят иные незадачливые студенты на экзаменах, огорчая терпеливых экзаменаторов, ибо ответ этот грубо ошибочен. Солнце влечет к себе Землю (и все, что на ней есть, в том

числе и океаны) неизмеримо сильнее, чем Луна. Ведь не вокруг Луны, а именно вокруг Солнца обращается наша планета.

А невелики солнечные приливные волны на Земле потому, что наше светило очень уж далеко — в 150 миллионах километров. В пять с лишним тысяч раз дальше, чем Луна.

Это значит, что земной диаметр по сравнению с расстоянием до Солнца ничтожно мал. Следовательно, весьма незначительна и разница в силе солнечного тяготения по ту и другую сторону нашей планеты. Другими словами, на дневной и ночной сторонах Земли вода океана падает к Солнцу с очень близкими ускорениями. Поэтому и невелики солнечные горбы.

Все дело, как видите, в том, что по сравнению с расстоянием Земля — Луна наша планета довольно велика, а по сравнению с расстоянием Земля — Солнце мала. Для солнечного тяготения Земля — точка, для лунного — отнюдь не точка. Вот и ответ на хитрый экзаменационный вопрос.

Бегство от удивлений - doc2fb_image_0300000F.png

Вообще, подробная картина приливов получается довольно сложной и запутанной. Но для понимания ее не требуется ничего, кроме знания ньютоновской механики, теории тяготения и, конечно, карты береговой линии материков.

Есть, кстати сказать, и приливы суши, потому что земная кора не абсолютно тверда.

Глава 5. ЗОРКИЙ МАЯТНИК

Открытие в соборе

Формулы Ньютона отлично действуют «на земле, в небесах и на море». Этого мало. Они сохраняют свою власть и под землей.

Зная теорию тяготения, человек смотрит через планету, в глубь земных недр. И «глаз» для такого необыкновенного зрения самый простой из всех физических приборов — маятник.

Давно пора нам поподробнее поговорить о маятнике. Он сыграл и продолжает играть почетную роль в науке.

Помните, в третьей главе шла речь о маятнике Фуко? Благодаря инерции он сохранял плоскость качаний и доказал тем самым вращение Земли.

А вот другая примечательная особенность маятника. Ее первым подметил все тот же неутомимый Галилей.

Тогда он был еще студентом. Посещал, как положено, богослужения в Пизанском соборе. И во время скучных месс развлекался разглядыванием массивных бронзовых люстр- Они были красивы, эти люстры, ибо сработаны самим Бенвенуто Челлини. Но особенно любопытно было наблюдать их мерные покачивания после того, как служитель, зажигавший свечи, ненароком толкал их своим длинным шестом.

Во время богослужений, молитвенно обратив лицо к своду собора, можно было без помех наблюдать за качаниями люстр. И Галилео подметил: люстра качается, строго соблюдая ритм. Размахи происходят в одинаковое время. Правда, у Галилео, по обыкновению, не было часов, да и неловко было бы в соборе то и дело смотреть на них. Все-таки он умудрился измерять время — по ударам своего пульса. Так Галилей сумел поставить физический опыт в церкви. Нашел и объект эксперимента, и измерительный прибор — собственное сердце.

Еще характерный штрих: открыв странную особенность маятника, он сразу же применил ее на пользу делу — устроил регистратор пульса, хороший инструмент для врачей. Это были, по существу, первые маятниковые часы, которых теперь так много на нашей планете.

Свойство, открытое Галилео, называют изохронностью. Период колебаний (время каждого полного размаха Т) зависит у математического маятника (тяжелого тела, качающегося на легкой нити) только от длины нити, точнее — от квадратного корня длины. Масса же груза может быть любой. Эту закономерность знал уже Галилей. А полную формулу вывел голландский ученый Ганс Христиан Гюйгенс, последователь Галилея и современник Ньютона.

Вот эта формула:

Бегство от удивлений - doc2fb_image_03000010.png

Вы спросите: а при чем тут теория тяготения и подземное царство?

Чуть-чуть терпения.

Соревнуемся с Галилеем

В формуле маятника под знаком квадратного корня в знаменателе красуется g — то самое ускорение свободного падения, о котором мы не раз говорили в этой книжке.

Это и понятно. Ведь маятник, когда качается, падает. Правда, не свободно, но падает. А никакое падение не обходится без g. И здесь оно поэтому налицо. Причем из качаний маятника его очень просто определить, и, что весьма приятно, без всякой спешки. Не надо бросать тел с Пизанской башни или катать отшлифованные шары по желобу. Достаточно сделать маятник (подвесьте тяжелую гайку на длинной нити), тщательно измерить расстояние от точки подвеса до центра тяжести, чуть-чуть подтолкнуть его и сосчитать, сколько колебаний он совершит, скажем, за час.

Хорошо бы не прибегать во время опыта к современным секундомерам или хронометрам. Время лучше отмерить по самодельным солнечным часам (как их устроить, рассказано в школьном учебнике астрономии) .

Если вы не поленитесь и исполните такой опыт, то перещеголяете самого Галилео Галилея. При помощи пустяковых подручных средств, которыми, конечно, располагал знаменитый основоположник экспериментальной физики, сумеете сделать то, что так и не смог сделать этот гениальный итальянец, несмотря на все свои старания: измерить значение g. Если будете аккуратны, то получите по крайней мере две первые цифры этой знаменитой физической величины (даже если используете для отсчета времени солнечные часы). А Галилей, катая по желобу свои шары, ошибся, измеряя g, в два раза!

Впрочем, не очень радуйтесь. Галилей ведь не знал, что g стоит под корнем в знаменателе правой части формулы маятника, а вы эту формулу получили прямо из рук Гюйгенса. Будет совсем хорошо, если вам захочется узнать, как она выводится, — для этого требуется немного, всего лишь заглянуть в учебник физики. Сделайте это. И очень советую вам поставить опыт. Лучше с пониманием дела повозиться над маятником и солнечными часами, чем без всякого понимания спаять по готовой схеме транзисторный радиоприемник.

А теперь легко понять, как маятником заглядывают в земные недра. Причем заглядывают, не глядя в них!

12
{"b":"241944","o":1}