Литмир - Электронная Библиотека
A
A

В отличие от многих других биологических наук генетика с момента своего возникновения стремилась быть точной наукой. И вся история генетики – это история создания и использования в эксперименте все более и более точных методов и подходов, что сближает ее с такими точными науками, как физика, химия и математика.

А начало всему было положено чешским монахом Грегором Менделем, который в 1865 году опубликовал свой фундаментальный труд

с математическими расчетами, указывающими на существование неких абстрактных дискретных частиц, передающих наследственные свойства («частицы наследственности»), названных позднее генами. Эта феноменальная работа Менделя, осуществленная на горохе, не произвела особого эффекта на его современников и была забыта вплоть до 1900 года (научная мысль в то время еще не созрела для ее восприятия). Сам Мендель после неудачных попыток получить аналогичные результаты при скрещивании других растений прекратил опыты и до конца жизни занимался садоводством, пчеловодством и метеорологическими наблюдениями.

Лишь спустя 35 лет произошло то, что и должно было случиться: законы Менделя были переоткрыты независимо и одновременно тремя разными исследователями (Г. де Фризом, Э. Чермаком и К. Корренсом), после чего и начала интенсивно развиваться наука, получившая позднее название генетика. С тех пор эта наука и рожденные на ее основе молекулярная генетика и геномика занимают лидирующее положение среди прочих наук о природе, став в итоге одними из основных, определяющих сегодняшний и завтрашний день развития человечества.

Вскоре после открытия основных законов генетики было установлено, что маленькие продолговатые тельца, наблюдаемые под микроскопом в ядрах клеток, которые были названы хромосомами, ведут себя именно так, как это ожидалось от «единиц наследственности» Менделя. Но уже тогда было ясно, что число генов должно быть больше, чем число хромосом. В 1910 году Томас Хант Морган начал изучать относительно простой и удобный для анализа генетический аппарат плодовой мушки дрозофилы, что привело в конечном итоге к созданию хромосомной теории наследственности. Согласно этой теории, существуют многочисленные гены, которые линейно расположены в хромосомах, и их последовательность в будущем может быть расшифрована.

Известно, что гены управляют развитием любого живого организма с момента его рождения и до смерти. Гены достаются нам от родителей, и от них в значительной мере зависят наши физические параметры, внешность, склонность к различным заболеваниям или, наоборот, своего рода иммунитет к ним. При этом следует обратить внимание на то, что такие черты, как характер, убеждения, привычки, поведение и даже способности также определяются в значительной мере генетически, хотя здесь существенную роль могут играть и социальные факторы, такие, как условия жизни, воспитание, образование, окружение.

Лишь в 40–е годы прошлого века была установлена материальная основа генов. Выяснилось, что ею служит одна из так называемых нуклеиновых кислот, а именно дезоксирибонуклеиновая кислота (сокращенно, ДНК). Само существование нуклеиновых кислот было обнаружено швейцарским биохимиком Ф. Мишером еще в 1868 году, то есть всего через три года после открытия Менделем своих законов (случайность или закономерность?). Тогда из спермы лосося Ми–шер выделил фосфорсодержащее вещество, происходящее из клеточных ядер, которое он назвал нуклеином (от слова нуклеус – ядро), а мы теперь его называем дезоксирибонуклеиновой кислотой. Примечательно, что два таких важных открытия, как обнаружение единицы наследственности и ее физического носителя, были сделаны почти одновременно. Однако, как и в случае с законами Г. Менделя, практически никто из исследователей в то время не смог оценить важность открытия Мишера.

В дальнейшем существенный вклад в изучение нуклеиновых кислот внесли немецкий химик Альбрехт Кёссель и американский биохимик русского происхождения А. Ф. Левин. Первый установил, что в состав нуклеина входят четыре азотсодержащих вещества (их назвали азотистыми основаниями): аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т) (за это в 1910 г. Кёссель получил Нобелевскую премию по физиологии и медицине). Затем А. Ф. Левин показал, что в состав нуклеина, кроме тетрады А, Г, Ц и Т, входит вдобавок к фосфорной кислоте еще и сахар дезоксирибоза, то есть «рибоза без кислорода». Так и возникло название дезоксирибонуклеиновая кислота (ДНК). Позднее в составе другой нуклеиновой кислоты – рибонуклеиновой кислоты (РНК) – была обнаружена рибоза вместо дезок–сирибозы.

А. Ф. Левин предложил одну из первых гипотез о структуре нуклеиновых кислот. Согласно этой гипотезе, нуклеиновые кислоты построены как линейная комбинация связанных друг с друга химической связью нуклеотидов. По мнению Левина, четыре разных нук–леотида, входящие в состав нуклеиновых кислот, связаны последовательно в стандартный тетрануклеотид, который многократно повторяется в структуре нуклеиновой кислоты. И многие исследователи приняли эту гипотезу на веру. Однако столь однообразная и монотонная последовательность не годилась на роль материальной структуры генов. По этой причине долгое время бытовало мнение, что ДНК выполняет какую–то чисто структурную функцию в хромосомах.

Серия открытий, которые привели к современному пониманию генетической важности ДНК и ее основополагающей роли в организации хромосом, началась в середине 20–х годов прошлого века, когда Л. Зильберт на протеях и Ф. Гриффит на пневмококках описали опыты по серологической трансформации. В 1944 году американский биолог Освальд Теодор Эвери с соавторами в опытах с пневмококками показали, что с помощью чистого препарата ДНК могут быть специфически изменены их наследственные свойства. Однако даже эти безупречные результаты не убедили ученых полностью в том, что ДНК – это вещество наследственности. Они заставили ученых только усомниться в том, что ДНК играет чисто структурную роль в хромосомах. Продолжала господствовать теория белковой природы гена.

И такая ситуация сохранялась вплоть до апреля 1953 года.

ДНК – МОЛЕКУЛЯРНАЯ ОСНОВА ГЕНОМА

Сколько истин, признаваемых нами

в настоящее время бесспорными,

в момент провозглашения их казались

лишь парадоксами или даже ересями!

Екатерина II

Что мыслимо – то возможно,

что возможно – то мыслимо.

Г. Лейбниц

Тонкое устройство ДНК

Чтобы дальнейшее повествование было более ясным для читателя, рассмотрим сначала подробнее, как же устроена эта странная и загадочная молекула ДНК.

Итак, ДНК состоит из 4–х азотистых оснований, а также сахара (дезоксирибозы) и фосфорной кислоты. Два азотистых основания (сокращенно называемых Ц и Т) относятся к классу так называемых пиримидиновых основания, а два других (А и Г) – к пуриновым основаниям. Такое разделение связано с особенностями их структур, которые показаны на рис. 1.

Отдельные основания связаны в цепочке ДНК сахаро–фосфатны–ми связями. Эти связи изображены на следующем рисунке (рис. 2).

Все это известно уже довольно давно. Но детальное устройство молекулы ДНК стало понятно лишь спустя почти 90 лет после знаменитых работ Менделя и открытия Мишера. 25 апреля 1953 г. в английском журнале «Nature» было опубликовано небольшое письмо молодых и тогда еще мало известных ученых Джеймса Уотсона и Френсиса Крика редактору журнала. Оно начиналось словами: «Мы хотели бы предложить свои соображения по поводу структуры соли

Геном человека. Энциклопедия, написанная четырьмя буквами - i_001.png

Рис. 1. Структура азотистых оснований (элементарных «букв»), из которых построена молекула ДНК

4
{"b":"241296","o":1}