Однако обычно используемые выборки относительно невелики, и в этих случаях вероятность ошибки может быть значительной. В гуманитарных науках принято считать, что разница между двумя выборками отражает действительную разницу между соответствующими популяциями лишь в том случае, если вероятность ошибки для этого утверждения не превышает 5 %, т. е. имеется лишь 5 шансов из 100 ошибиться, выдвигая такое утверждение. Это так называемый уровень достоверности (уровень надежности, доверительный уровень) различия. Если этот уровень не превышен, то можно считать вероятным, что выявленная нами разница действительно отражает положение дел в популяции (отсюда еще одно название этого критерия — порог вероятности).
Для каждого статистического метода этот уровень можно узнать из таблиц распределения критических значений соответствующих критериев (t, χ2 и т. д.); в этих таблицах приведены цифры для уровней 5 % (0,05), 1 % (0,01) или еще более высоких. Если значение критерия для данного числа степеней свободы (см. дополнение Б.4) оказывается ниже критического уровня, соответствующего порогу вероятности 5 %, то нулевая гипотеза не может считаться опровергнутой, и это означает, что выявленная разница недостоверна.
Дополнение Б.4. Степени свободы
Для того чтобы свести к минимуму ошибки, в таблицах критических значений статистических критериев в общем количестве данных не учитывают те, которые можно вывести методом дедукции. Оставшиеся данные составляют так называемое число степеней свободы, т. е. то число данных из выборки, значения которых могут быть случайными.
Так, если сумма трех данных равна 8, то первые два из них могут принимать любые значения, но если они определены, то третье значение становится автоматически известным. Если, например, значение первого данного равно 3, а второго — 1, то третье может быть равным только 4. Таким образом, в такой выборке имеются только две степени свободы. В общем случае для выборки в n данных существует n — 1 степень свободы.
Если у нас имеются две независимые выборки, то число степеней свободы для первой из них составляет n1 — 1, а для второй — n2 — 1. А поскольку при определении достоверности разницы между ними опираются на анализ каждой выборки, число степеней свободы, по которому нужно будет находить критерий t в таблице, будет составлять (n1 + n2) — 2.
Если же речь идет о двух зависимых выборках, то в основе расчета лежит вычисление суммы разностей, полученных для каждой пары результатов (т. е., например, разностей между результатами до и после воздействия на одного и того же испытуемого). Поскольку одну (любую) из этих разностей можно вычислить, зная остальные разности и их сумму, число степеней свободы для определения критерия t будет равно n — 1.
Параметрические методы
Метод Стьюдента (t-тест)
Это параметрический метод, используемый для проверки гипотез о достоверности разницы средних при анализе количественных данных о популяциях с нормальным распределением и с одинаковой вариансой [216].
Метод Стьюдента различен для независимых и зависимых выборок. Независимые выборки получаются при исследовании двух различных групп испытуемых (в нашем эксперименте это контрольная и опытная группы). В случае независимых выборок для анализа разницы средних применяют формулу
t =
,
где
— средняя первой выборки;
— средняя второй выборки;
s1 — стандартное отклонение для первой выборки;
s2 — стандартное отклонение для второй выборки;
n1 и n2 — число элементов в первой и второй выборках.
Теперь осталось лишь найти в таблице значений t (см. дополнение Б.5) величину, соответствующую n — 2 степеням свободы, где n — общее число испытуемых в обеих выборках (см. дополнение Б.4), и сравнить эту величину с результатом расчета по формуле.
Если наш результат больше, чем значение для уровня достоверности 0,05 (вероятность 5 %), найденное в таблице, то можно отбросить нулевую гипотезу (H0) и принять альтернативную гипотезу (H1), т. е. считать разницу средних достоверной.
Если же, напротив, полученный при вычислении результат меньше, чем табличный (для n — 2 степеней свободы), то нулевую гипотезу нельзя отбросить и, следовательно, разница средних недостоверна.
В нашем эксперименте с помощью метода Стьюдента для независимых выборок можно было бы, например, проверить, существует ли достоверная разница между фоновыми уровнями (значениями, полученными до воздействия независимой переменной) для двух групп. При этом мы получим:
t =
= = 0,53.
Сверившись с таблицей значений t, мы можем прийти к следующим выводам: полученное нами значение t = 0,53 меньше того, которое соответствует уровню достоверности 0,05 для 26 степеней свободы (η = 28); следовательно, уровень вероятности для такого t будет выше 0,05 и нулевую гипотезу нельзя отбросить; таким образом, разница между двумя выборками недостоверна, т. е. они вполне могут принадлежать к одной популяции.
Сокращенно этот вывод записывается следующим образом:
t = 0,53; η = 28; p > 0,05; недостоверно.
Однако наиболее полезным t-тест окажется для нас при проверке гипотезы о достоверности разницы средней между результатами опытной и контрольной групп после воздействия [217]. Попробуйте сами найти для этих выборок значения и сделать соответствующие выводы:
t =
=
=
Значение t…… чем табличное для 0,05 (….. степеней свободы). Следовательно, ему соответствует порог вероятности…… чем 0,05. В связи с этим нулевая гипотеза может (не может) быть отвергнута. Разница между выборками достоверная (недостоверна?):
t =…..; η =…..; P….. (<, =, >?) 0,05;…..
Метод Стьюдента для зависимых выборок
К зависимым выборкам относятся, например, результаты одной и той же группы испытуемых до и после воздействия независимой переменной. В нашем случае с помощью статистических методов для зависимых выборок можно проверить гипотезу о достоверности разницы между фоновым уровнем и уровнем после воздействия отдельно для опытной и для контрольной группы.
Для определения достоверности разницы средних в случае зависимых выборок применяется следующая формула:
t =
,
где d — разность между результатами в каждой паре;
Σd — сумма этих частных разностей;
Σd2 — сумма квадратов частных разностей.
Полученные результаты сверяют с таблицей t, отыскивая в ней значения, соответствующие n — 1 степени свободы; n — это в данном случае число пар данных (см. дополнение Б.3).