Литмир - Электронная Библиотека
Содержание  
A
A

Мы уже говорили об индикатрисах, рассчитанных Рэлеем и Шулейкиным. Можно ли рассчитать с достаточной точностью индикатрису морской воды?

Принципиально такой расчет возможен, но для этого нужно иметь полное представление о количестве, размерах и оптических свойствах взвешенных в морской воде частиц. Современная техника исследований не позволяет получить всю необходимую нам информацию.

Зная индикатрису рассеяния во всем интервале углов от 0 до 180°, можно исследовать размеры взвешенных в воде частиц. Оптические методы определения размеров рассеивающихся частиц в различных средах, разработанные К. С. Шифриным, в настоящее время начинают использоваться и в оптике моря.

Свет в море - i_013.jpg

Рис. 9. Распределение частиц взвеси по крупности в водах Средиземного моря

1 — неорганическая; 2 — органическая

Свет в море - i_014.jpg

Рис. 10. Индикатрисы рассеяния для крупных частиц (по В. В. Шулейкину)

Для определения рассеивающих свойств морской воды необходимо проводить непосредственные измерения, либо доставив пробу воды в судовую лабораторию, либо опустив прибор в море. Такие приборы обычно называют нефелометрами.

Одним из первых приборов такого рода была установка, разработанная А. А. Гершуном и М. М. Гуревичем в Государственном оптическом институте им. С. И. Вавилова. На рис. 11 приведена схема измерений рассеяния этим прибором. Сосуд с водой через оптическую систему освещался параллельным пучком света. Как и в примере с аквариумом, в этом сосуде из-за рассеяния света создается светящийся след, яркость которого под различными углами оценивает фотометр путем сравнения ее с яркостью матовой пластинки с известным коэффициентом отражения, помещенной в центре сосуда.

Получив ряд значений яркости для различных углов, во-первых можно построить индикатрису рассеяния, а во-вторых, рассчитать показатель рассеяния.

Если собрать весь свет, рассеянный по различным направлениям, мы получим общее число фотонов ΔN, рассеянных нашим объемом воды. Точно так же, как и в случае поглощения, это число пропорционально количеству фотонов N, падающих на слой, и толщине слоя Δz:ΔN = σNΔz. По аналогии с показателем поглощения коэффициент пропорциональности σ в этой формуле носит название показателя рассеяния. Он равен вероятности того, что фотон, пробегая в веществе слой единичной толщины, изменит направление своего движения.

Оригинальную конструкцию прибора для измерения рассеяния света разработал и применил В. В. Шулейкин. В его установке источником света служило солнце, лучи которого гелиостатом направлялись в систему линз и объективов, а оттуда в виде интенсивного пучка параллельного света в прибор. Многократно преломившись в коленчатой трубе установки, свет под разными углами освещал исследуемый объем воды, а яркость его сравнивалась фотометрическим устройством с яркостью эталонной пластинки.

Одним из современных «индикатрисомеров» является гидронефелометр СГН-57, сконструированный в ГОИ под руководством В. Б. Вейнберга. На рис. 12 изображен внешний вид этого прибора, а на рис. 13 — его оптическая схема. Как же ведут измерения этим прибором?

Свет в море - i_015.jpg

Рис. 11. Нефелометр Гершуна — Гуревича

Он устанавливается на специальном столе в судовой лаборатории. Так как измерения зачастую приходится вести во время качки, то прибор крепится к столу надежными зажимами. Первоначально предполагалось, что вода в прибор будет подаваться из-за борта по специальному шлангу с помощью насоса, но это оказалось очень трудно выполнить практически. Кроме того, этим путем можно было получить только воду самого поверхностного слоя моря. А как быть, если надо измерить рассеивающую способность воды, допустим, из Марианской впадины в Тихом океане, с глубин, превышающих 10 000 м или, более скромно, 1000–2000 м? Пришлось воспользоваться батометрами[8]. Но как ни мыли горячей водой с мылом, паром, специальными химикалиями и другими способами металлические батометры, которыми пользуются гидрологи, они оказались «грязными» для оптических исследований.

Тогда инженер А. С. Сусляев создал несколько типов «чистых» батометров из винипласта (рис. 14), позволяющих взять семилитровую пробу воды с любой глубины океана. В кювету прибора заливается около пяти литров воды, а остальная часть пробы может быть использована для исследования взвеси или других целей.

Свет в море - i_016.jpg

Рис. 12. Внешний вид спектрогидронефелометра СГН-57

Свет в море - i_017.jpg

Рис. 13. Схема прибора СГН-57, используемого в качестве нефелометра

1 — оптическое устройство; 2 — источник света; 3 — зеркало; 4 — объектив; 5 — освещенный объем воды, находящийся в поле зрения наблюдателя; 6 — осветитель узла сравнения прибора; 7 — окуляр

Измерения проводятся следующим образом. Оптическое устройство 1 концентрирует свет от лампы 2 в виде параллельного пучка, который, отразившись от зеркала 3 и пройдя через объектив 4, попадает в воду, осветив в ней определенный объем. Этот освещенный объем, естественно, как бы сам становится источником света, имеющим разную яркость в зависимости от того, под каким углом γ мы на него посмотрим. Наблюдатель, глядя в окуляр 7, выравнивает яркость фотометрических полей, создаваемую освещенным объемом воды и светом от осветителя узла сравнения прибора 6, и по отсчету на специальном барабане определяет яркость рассеянного света. Осветительное устройство жестко соединено с диском, закрывающим кювету прибора. На нем имеются градусные деления. Вращая диск, наблюдатель под различными углами освещает объем воды и измеряет яркость. По результатам измерений строятся графики индикатрисы и вычисляется показатель рассеяния. В приборе установлены также цветные светофильтры для того, чтобы все измерения можно было проводить в разных участках спектра.

В описанных исследованиях есть, однако, элемент искусственности. Пробу воды «вырывают» из родной стихии, переливают в прибор и т. д. Это несколько искажает естественные условия, в которых распространяется свет. Потому в последние годы гидрооптики все чаще измеряют рассеивающие свойства вод, погружая приборы непосредственно в море.

Внешний вид одного из таких приборов представлен на рис. 15. Принцип работы измерителя довольно прост. При измерениях блок осветителя 1 начинает медленно поворачиваться относительно центра рассеивающего объема 3. Перед фотоумножителем 2 при вращении последовательно проходят 12 окошек, прорезанных в лимбе прибора через каждые 10°. Ширина этих прорезей пропорциональна синусу угла, так что измеряемое рассеяние создается постоянным объемом. Как видим, это уже не визуальный, а объективный фотометр, в котором человеческий глаз заменен фотоумножителем.

Ерлов, описывая измерения, проведенные указанным прибором в верхних слоях моря, отмечал, что чувствительность фотоумножителя была столь велика, что наблюдения можно было проводить только в безлунные ночи с выключенным освещением на палубе судна. Благодаря этим мерам в иллюминатор фотоумножителя не попадал посторонний свет.

Свет в море - i_018.jpg

Рис. 14. Гидрооптический батометр конструкции Сусляева

Свет в море - i_019.jpg

Рис. 15. Внешний вид измерителя рассеяния Ерлова

1 — осветительное устройство; 2 — приемник излучения; 3 — ось вращения

вернуться

8

Сосуды специальной конструкции, с помощью которых берутся пробы воды определенного объема с любой глубины

6
{"b":"238951","o":1}