Литмир - Электронная Библиотека
Содержание  
A
A

Существование глубинного режима предсказал академик В. А. Амбарцумян. Экспериментальное подтверждение этого интересного явления было получено сначала на модельных средах, а затем и непосредственно в море.

В Морском гидрофизическом институте В. А. Тимофеева детально исследовала условия наступления глубинного режима и установила зависимость формы углового распределения яркости от соотношения между рассеянием и поглощением. Она использовала молочные и канифольные среды, поглощение в которых изменялось путем добавления красителя в различных концентрациях. Глубина, на которой устанавливается постоянная, форма тела яркости, зависит от соотношения между рассеянием и поглощением и от индикатрисы рассеяния. В сильно поглощающей среде глубинный режим наступает только при очень значительном ослаблении первоначального светового потока. Море с этой точки зрения представляет собой идеальный объект для изучения глубинного режима — ведь в морской воде рассеяние, как правило, значительно превышает поглощение. Измерения Института океанологии показали, что в Черном море постоянная форма тела яркости устанавливается на глубине лишь немного больше 100 м. В более прозрачном Средиземном море это явление осуществляется только на 200-метровой глубине.

Наступление глубинного режима в значительной степени зависит от того, как освещается поверхность моря. При облачном небе, когда прямых солнечных лучей нет, глубина его установления значительно меньше, чем при наличии направленного солнечного излучения.

Спектральный состав солнечного света на различных глубинах

Мы уже знаем, как происходит ослабление направленного светового пучка в светорассеивающей среде, как формулируется закон Бугера, что такое показатель ослабления света. Если рассматривать поведение не какого-то отдельного светового пучка, а, всего потока света, распространяющегося от поверхности в глубь моря, то мы увидим, что ослабление этого потока с глубиной в первом приближении также подчиняется показательному закону: Фz = Ф0∙10-αz0 — величина светового потока непосредственно под поверхностью моря; Фz — величина потока, достигающего глубины z). Показатель α в этой формуле носит название показателя вертикального ослабления и его не следует путать с показателем ослабления ε. Эти два показателя значительно отличаются друг от друга по величине. Показатель ослабления ε используется для оценки ослабления светового пучка, распространяющегося в каком-то одном направлении, и складывается из поглощения и всего рассеяния. Показатель вертикального ослабления α характеризует ослабление всего нисходящего светового потока в море (т. е. потока, составленного из множества «элементарных» световых пучков различных направлений). Он складывается из поглощения и лишь небольшой доли рассеяния (ведь мы уже говорили, что большая часть рассеянного света по-прежнему распространяется в глубь моря). Ясно, что показатель вертикального ослабления α будет всегда значительно меньше, чем показатель ослабления ε. Например, в Черном море, когда показатель ослабления ε составлял 0,17 м-1, показатель вертикального ослабления а оказался равным всего лишь 0,04 м-1.

Столь большая разница имеет огромное значение для распространения света в море. Действительно, ослабляясь со значением показателя 0,04 м-1, нисходящий световой поток на глубине 100 м уменьшается в 10 000 раз, в то время как, если бы он ослаблялся со значением показателя 0,17 м-1, он уменьшился бы на этой глубине в 100 000 000 000 000 000 раз, т. е. его практически нельзя было бы обнаружить. На величину показателя вертикального ослабления α влияет характер освещения поверхности моря (в верхних слоях он зависит от высоты Солнца) и глубина. Это происходит и благодаря неоднородности оптических свойств морской воды по вертикали и вследствие изменения с глубиной состава излучения. После наступления глубинного режима показатель α уже не меняется и его значение зависит только от оптических свойств среды.

Величина показателя вертикального ослабления α зависит от длины волны света. Различные участки солнечного спектра ослабляются в море неодинаково, и спектральный состав света с глубиной изменяется.

Известно, что спектральные зависимости поглощения и рассеяния света в морской воде различны в разных водах. Вследствие этого по-разному зависит от длины волны света и показатель вертикального ослабления α. Эти различия легли в основу классификации типов морских вод, разработанной Н. Ерловым.

Океанские воды делятся на три основных типа, причем между типами I и II находятся еще два промежуточных (IA и IB). Прибрежные воды более разнообразны по своим свойствам: основываясь на результатах своих измерений вблизи побережья Скандинавии и Северо-Западной Америки, Ерлов подразделил их на девять типов. На рис. 32 и 33 показано, как уменьшается с глубиной нисходящий световой поток в водах различного типа, и даны спектральные кривые пропускания этих вод. Рис. 34 иллюстрирует спектральное распределение солнечного света на различных глубинах в самых чистых океанских водах.

Общим свойством всех типов морской воды является сильное ослабление с глубиной красного участка спектра. Исчезновение красного света из распространяющегося в глубь моря светового потока может привести к неожиданным цветовым эффектам под водой. Об одном из таких эффектов рассказывают Ж.-И. Кусто и Ф. Дюма. Удивительная картина открылась перед ними, когда на глубине нескольких десятков метров Дюма (Диди) ранил гарпуном большую рыбу-лихию:

«…Кровь была зеленая! Ошеломленный этим зрелищем, я подплыл ближе, глядя на струю, вместе с которой из сердца рыбы уходила жизнь. Она была изумрудного цвета. Мы недоумевающе переглянулись. Сколько раз мы плавали среди лихий, но никогда не подозревали, что у них зеленая кровь. Крепко держа гарпун со своим поразительным трофеем, Диди пошел вверх. На глубине пятидесяти пяти футов кровь стала коричневой. Двадцать футов — она уже розовая, а на поверхности растеклась алыми струями»[18].

Свет в море - i_039.jpg

Рис. 32. Ослабление нисходящего светового потока с глубиной в водах различных типов (% от падающего на поверхность)

Свет в море - i_040.jpg

Рис. 33. Спектральные кривые пропускания (% на 1 м) исходящего светового потока водами различных типов

Свет в море - i_041.jpg

Рис. 34. Спектральное распределение света на разных глубинах в самых чистых океанских водах

Для того чтобы понять причины этого интересного явления, нужно выяснить, а чем же вообще определяется видимый цвет какого-либо предмета. Ответить коротко на этот вопрос не просто — ведь восприятие цвета человеческим глазом вызывается рядом причин. Главная из них — спектральный состав света, отраженного предметом. Каждая поверхность отражает свет различных спектральных участков по-разному. Например, красный цвет объекта означает, что он отражает красные лучи лучше других. Цвет предмета зависит и от того, каким светом он освещен. Так, если направить на красный предмет световой пучок, в котором красный цвет практически отсутствует, предмет уже не будет казаться красным (если красного цвета нет в падающем пучке, его не будет в отраженном).

Освещая ярким белым светом морские глубины, можно увидеть настоящие цвета подводного царства. Вот как описывают богатство его красок авторы книги «В мире безмолвия»:

«На глубине ста пятидесяти футов Диди навел рефлектор на склон рифа и включил свет. Риф буквально взорвался красками!

Луч света выявил ослепительную гамму; преобладали сочные оттенки красного и оранжевого цветов. Яркость красок напоминала о картинах Матисса. Впервые после сотворения мира озарилось светом все великолепие палитры сумеречной зоны. Мы упивались невиданным зрелищем. Даже рыбы никогда не видели ничего подобного. Почему такое богатство оттенков собралось там, где нельзя его оценить? И почему в глубинах преобладал красный цвет, который первым отфильтровывается в верхних слоях? Какие краски таятся еще глубже, в области вечного мрака?»

вернуться

18

Ж.-И. Кусто, Ф. Дюма. В мире безмолвия…

15
{"b":"238951","o":1}