В общем антибиотик, полученный Дюбо, не стал настоящей «магической пулей». Найти «короля антибиотиков» было суждено другим. Однако это ни в коей мере не умаляет работы талантливого исследователя, сумевшего найти способ заставить мир микробов дать в распоряжение человека именно ту культуру, которую он искал.
Забегая вперед, скажем, что немногим позже (в 1942 году) двое советских ученых, Гаузе и Бражникова, поставив перед собой задачу получить антибиотик, подобный тироцидину Дюбо, смогли даже отказаться от орошения почвы взвесью стафилококков. В отличие от Дюбо они полагали, что микробы, выделяющие антибиотики, распространены в почве очень широко. Исследователи не ошиблись. В одном из опытов удалось выделить из подмосковной почвы 70 штаммов, угнетавших развитие других бактерий.
Дальнейшее изучение вскоре показало, что один штамм из 70 выделяет вещество, не только похожее на тироцидин, но даже являющееся чистым грамицидином. Так был получен советский грамицидин — грамицидин С. Препарат этот оказался во многом еще более активным, чем его американский предшественник.
Но вернемся к судьбе пенициллина, родившего своим поведением в лаборатории много надежд и разочаровавшего исследователей нежеланием существовать в виде стойкого соединения.
…Разбитая под Дюнкерком и разбомбленная гитлеровской авиацией Англия переживала тяжелые дни. Большинство заводов работало на оборону, производство многих лекарств прекратилось. А госпитали были переполнены ранеными. И вот тогда снова вспомнили о пенициллине. В 1940 году в Оксфорде уже целый научный коллектив во главе с биохимиком Чэйном и австралийским патологоанатомом Флори пытался преодолеть препятствие, перед которым отступил Флеминг. Работала оксфордская группа не жалея сил, самоотверженно и изобретательно, преодолевая одно препятствие за другим.
Вскоре им удалось добиться и первых обнадеживающих результатов. Выяснилось, что если заморозить концентрированный водный раствор пенициллина и в таком замороженном состоянии высушить при пониженном давлении (в вакууме), то он превратится в относительно устойчивый порошок.
Полученный препарат ввели больному… Исход оказался трагическим. Пенициллин вызвал резкое повышение температуры, за которым последовала смерть. Но работа продолжалась. Нужно было найти какие-то способы дополнительной очистки препарата от примесей, вызывающих повышение температуры.
Очистка при помощи колонок с окисью алюминия решила задачу. Полученный таким образом препарат убивал многих болезнетворных бактерий, не вызывая у больных никаких нежелательных явлений. Препарат оказался стойким. Продолжительность его жизни составляла уже несколько месяцев.
В результате дальнейшей тщательной очистки пенициллин был выделен в кристаллической форме. Он обладал активностью необычайной, превосходя в этом отношении своего предка — жидкий пенициллин Флеминга — в миллион раз. Это была уже полная победа.
Так окончилась история, начавшаяся с микроскопической споры плесневого гриба, которую случай занес в крохотную лабораторию Флеминга 12 лет назад.
Узнав о том, что удалось сделать оксфордским ученым, Флеминг, познакомившись с их работой, грустно сказал:
— Вот с такими учеными-химиками я мечтал работать в 1929 году.
И легко представить, сколько жизней было бы спасено, если бы работы Флеминга получили признание и материально-техническое обеспечение еще в то время.
Открытие пенициллина послужило толчком к изысканию новых лечебных веществ среди мира микробов. Теперь уже ни у кого не вызывало сомнения, что антибиотики, служащие производящим их бактериям, плесневым грибам и актиномицетам химическим оружием подавления микробов-конкурентов, могут оказаться мощными лекарственными препаратами.
Последние 15 лет работы по изысканию новых эффективных антибиотиков ведутся очень широко во многих странах. В разработку этой проблемы включилось несколько десятков крупных институтов, объединивших несколько тысяч научных работников: микробиологов, химиков и химиотерапевтов.
Поиски идут широким фронтом. Еще в 1956 году немецкие микробиологи Линдер и Валлахойзер подсчитали, что открыто около 400 антибиотиков, подавляющих рост болезнетворных бактерий. Однако лишь 14 из них нашли применение в медицинской практике. От остальных по тем или иным причинам пришлось отказаться.
Итак, поиски новых лекарственных препаратов — дело нелегкое, похожее на поиски иголки в стоге сена. В огромном арсенале химического оружия микробов лишь немногие вещества оказываются пригодными в качестве лекарств.
Впрочем, не все исследователи идут путем поисков антибиотиков среди естественных антагонистов — микробов, которых сама природа, борьба за существование сделали врагами.
Враги поневоле
Несколько лет назад в одной из литературных газет промелькнуло небольшое произведение, не имеющее, казалось бы, никакого отношения к серьезным научным проблемам. Это была хлестко и ярко написанная пародия на научно-фантастические рассказы. Как и полагается пародии, фантастика здесь доводилась до абсурда. Особенно запоминались следующие абзацы:
«На ракетодроме, сразу после посадки, марсианину Нави сделали земные прививки, но болезней всегда больше, чем прививок, и на другой день он схватил сразу пять болезней: холеру, свинку, коклюш, малярию и туляремию.
Свались на земного жителя столько недугов, бедняга умер бы, а Нави — ничего, излечился, даже не прилег на кровать! Он применил к себе метод лечения, называемый „науськивание микробов друг на друга“. От проглоченной марсианской таблетки микробы в животе у Нави стали ужасно нервными и пошли пожирать друг друга. Свинка съела малярию, малярия — туляремию. Эта, в свою очередь, расправилась с коклюшем, но была поглощена холерными микробами, а последние сами скончались от обжорства».
Можно ли представить себе большую нелепость, чем «науськивание микробов»? Фантастика! Автору даже на секунду не могло прийти в голову, что придуманный им способ лечения марсианина не так уж фантастичен. Мало того, «науськивание микробов» — это серьезная научная проблема, при решении которой получены результаты поистине удивительные.
Страшный холерный вибрион и в самом деле может стать жертвой даже безобидных дрожжевых грибков, если, конечно, суметь их «науськать». Идею эту выдвинул еще перед первой мировой войной ассистент Ильи Ильича Мечникова Игнатий Горациевич Шиллер, занимавшийся в то время вместе со своим великим учителем проблемой естественного антагонизма микробов.
«Действительно, почему бы, вместо того чтобы искать микроорганизмы, которые природа сделала врагами, не попробовать вызвать борьбу одного вида микробов против другого искусственно здесь, в стенах лаборатории?» — решил однажды он.
Мысль представлялась заманчивой, и начались эксперименты. И вот после долгих упорных трудов ученому, наконец, удалось заставить бороться друг с другом виды микробов, абсолютно мирно сосуществующие в обычных природных условиях.
Так, безобидная картофельная палочка (микроб, живущий на поверхности картофельных клубней) стала уничтожать опасного стрептококка — возбудителя гнойных заболеваний. В других опытах пивные дрожжи растворяли туберкулезную бациллу — микроба, как известно, весьма устойчивого. Но вот меняются условия эксперимента, и эта же палочка Коха легко становится победительницей дрожжей. Снова опыты, и обычно мирные в природных условиях дрожжи выступают как злейшие враги возбудителя брюшного тифа и т. д.
Способность микроорганизмов вступать в состояние борьбы в искусственных условиях Шиллер назвал явлением «насильственного антагонизма микробов». Но как, при помощи какой «волшебной палочки» удалось ученому дирижировать в мире микробов, превращая по своей воле во врагов обычно мирно существующие в природе и безразличные друг к другу виды микробов?