6. Вот почему, на мой взгляд, некоторые жители Америки, с которыми я разговаривал (и которые в других отношениях обладали довольно хорошими умственными способностями), в своем счете никоим образом не могли, подобно нам, дойти до тысячи и не имели отдельной идеи этого числа, хотя очень хорошо считали до двадцати, ибо их язык, скудный, приспособленный к немногим потребностям их бедной и простой жизни, не знакомой ни с торговлей, ни с математикой, не имел слов для обозначения тысячи. И когда с ними беседовали о таких больших числах, то для выражения большого количества, которого они не могли счесть, они указывали на свои волосы на
==257
голове. Эта неспособность их, я полагаю, происходила от недостатка названий. У племени туупинамбо не было имен для чисел выше пяти; все числа больше пяти они выражали, показывая на свои пальцы и на пальцы других присутствующих лиц. Да и мы сами, несомненно, могли бы точно считать, [пользуясь] словами гораздо дальше, чем считаем обычно, если бы придумали хотя бы еще несколько пригодных для обозначения чисел наименований. Между тем при нашем теперешнем способе счисления, когда мы выражаем большие числа миллионами миллионов миллионов и т. д., трудно, не вызывая путаницы, идти дальше восемнадцати или, самое большее, двадцати четырех десятичных разрядов. А чтобы показать, как много особые имена способствуют хорошему счету или приобретению полезных идей чисел, предположим, что все нижеследующие цифры суть знаки одного-единственного числа 52:
Нонильоны 857 324 Октильоны 162 486 Септильоны 345 896 Секстильоны 437 916 Квинтильоны 423 147
Квадрильоны 248 106 Триллионы 235 421 Биллионы 261 734 Миллионы 368 149 Единицы 623 137
Обычный способ названия этого числа словами будет состоять в частом повторении миллионов миллионов миллионов миллионов миллионов миллионов миллионов, т. е. наименования второй шестерки цифр. Этим путем очень трудно получить сколько-нибудь ясное понятие об этом числе. Я предоставляю другим рассмотреть, не легче ли будет различать при исчислении такие и, быть может, гораздо большие числа, а идеи их не легче ли будет приобретать нам самим и выражать их более понятно для других, если мы каждой шестерке цифр будем давать новые и идущие по порядку наименования. Я говорю об этом только для того, чтобы показать, как необходимы для счисления особые названия, и вовсе не думаю вводить новые названия собственного изобретения.
7. Почему дети не начинают считать раньше? Таким образом, дети или за неимением названий для обозначения различных числовых разрядов, или вследствие отсутствия способности соединять разрозненные идеи в сложные, приводить их в стройный порядок и удерживать их в памяти, как это необходимо для счета, начинают считать не очень рано и успевают в этом не особенно много и не
==258
очень хорошо довольно долго после того, как приобрели большой запас других идей. Можно часто наблюдать, как они сравнительно неплохо говорят и рассуждают и имеют очень ясные представления о разных других вещах до того, как умеют считать до двадцати. А некоторые, будучи вследствие недостатка памяти не в состоянии запоминать различные сочетания чисел вместе с их названиями в их определенном порядке, связь такого длинного ряда числовых разрядов и их соотношение, даже всю свою жизнь не могут правильно считать далее скромного ряда чисел. Кто захочет счесть двадцать или получить идею этого числа, тот должен знать, что ему предшествует девятнадцать, а также знать особые названия, или знаки, каждого из них в их определенном порядке. Где этого нет, там образуется пробел, цепь обрывается и дальнейший счет невозможен. Таким образом, для правильного счета требуется: 1) чтобы ум тщательно различал две идеи, отличающиеся друг от друга только прибавлением или вычитанием одной единицы; 2) чтобы он удерживал в памяти названия, или знаки, различных сочетаний от единицы до данного числа, не спутанно и не наобум, а в том строгом порядке, в каком одно число следует за другим. Если промахнуться в чем-либо одном, все дело счета рушится и остается только смутная идея множества, но не получается идей, необходимых для точного счисления.
8. Число измеряет все измеримое. Далее относительно числа следует заметить, что ум пользуется числом при измерении всех поддающихся измерению вещей, главным образом протяжения и продолжительности; даже наша идея бесконечности того и другого, по-видимому, не что иное, как бесконечность числа. Действительно, что такое, в самом деле, наши идеи вечности и необъятности, как не повторные прибавления определенных идей воображаемых частей продолжительности и распространенности в соединении с бесконечностью числа, в которой мы не можем доходить до предела прибавления? Ибо число совершенно очевидно доставляет нам неисчерпаемый запас всех наших других идей, что ясно каждому. Какое бы большое число мы ни соединили в одной сумме, это множество, как бы велико оно ни было, ни на йоту не уменьшает возможности прибавлять к нему и не приближает нас к концу неисчерпаемого запаса чисел, где всегда остается так же много для прибавления, как если бы ни одно не было отнято. И мне думается, что именно это бесконечное сложение, или слагаемость (если кому
==259
нравится больше последнее слово), чисел, столь очевидное для ума, дает нам наиболее ясную и четкую идею бесконечности. О последней подробнее в следующей главе.
Глава семнадцатая О БЕСКОНЕЧНОСТИ
1. Первоначально намеревались приписать бесконечность пространству, продолжительности и числу. Тому, кто хочет знать, какова та идея, которой мы даем имя <бесконечность>, лучше всего это сделать, рассмотрев, чему бесконечность приписывается умом всего непосредственнее и как ум приходит к ее образованию.
Мне кажется, что конечное и бесконечное рассматриваются умом как модусы количества и приписываются сначала при их первом употреблении только тем вещам, которые состоят из частей и могут посредством прибавления или вычитания самых малых частей увеличиваться и уменьшаться. Таковы идеи пространства, продолжительности и числа, которые мы рассмотрели в предыдущих главах. Поистине мы не можем не быть уверенными в непостижимой бесконечности великого бога, из которого и от которого всё. Но когда мы в своем слабом и ограниченном мышлении прилагаем свою идею бесконечности к этому первому и верховному существу, мы делаем это прежде всего по отношению к его продолжительности и вездесущности, а по отношению к его могуществу, мудрости, доброте и другим атрибутам, которые воистину неистощимы, непостижимы и т. д., мы делаем это, на мой взгляд, скорее в переносном смысле. Ибо, когда мы называем их бесконечными, под идеей этой бесконечности мы разумеем лишь такую идею, с которой связано размышление и представление о числе или распространенности действий и объектов божьей силы, мудрости и доброты, причем, какими бы великими или многочисленными мы ни предполагали эти действия и объекты и сколько бы мы. ни умножали их в своих мыслях, атрибуты бога всегда будут превосходить и превышать их со всей бесконечностью бесконечного числа. Я не претендую на то, чтобы указать, каковы эти атрибуты в боге, который бесконечно выше досягаемости наших ограниченных способностей; они, без сомнения, заключают в себе все возможное совершенство. Но таков, говорю я, наш путь их постижения, и таковы наши идеи их бесконечности.
==260
2. Идея конечного приобретается легко. Определив, что ум рассматривает конечное и бесконечное как модификации распространенности и продолжительности, мы должны затем исследовать, как ум приходит к ним. Что касается идеи конечного, она не представляет большой трудности. Очевидные части протяженности, воздействующие на наши чувства, приносят с собой в ум идею конечного; обычные промежутки последовательности, которыми мы измеряем время и продолжительность, такие, как часы, дни и годы, суть ограниченные величины. Трудность представляет то, как мы приходим к беспредельным идеям вечности и необъятности, ибо предметы, с которыми мы имеем дело, даже приблизительно или относительно не достигают таких величин.