11. Продолжительность подобна линии, распространенность - телу. Но между ними есть и очевидная разница. Идеи длины, которые мы имеем о распространенности,
==253
могут принимать любое направление и образовывать форму, ширину и толщину; продолжительность же подобна длине прямой линии, простертой in infinit um, и не способна создать множественность, разнообразие или форму, но есть общая мера всего сущего, которой одинаково причастны все вещи, пока существуют. Ибо настоящий момент является общим для всех существующих теперь вещей и одинаково охватывает данную часть их существования, как если бы они все были одной-единственной вещью; мы справедливо можем сказать, что все они существуют в один и тот же момент времени. Вопрос о том, есть ли в ангелах и духах нечто аналогичное распространенности, выше моего понимания. Наш разум и наше понимание соответствуют нашему самосохранению и целям нашего собственного существования, но не приноровлены ко всей действительности и всему тому, что в ней существует. Поэтому постигнуть какое-нибудь существование или получить идею какого-нибудь реального существа, лишенного какого бы то ни было протяжения, для нас, быть может, почти так же трудно, как получить идею какого-нибудь реального существа, лишенного всякой продолжительности. Потому мы и не знаем, в каком отношении стоят духи к пространству и как они в нем соотносятся друг с другом. Все, что мы знаем,- это то, что каждая единичная вещь имеет свой надлежащий участок пространства соответственно протяжению своих плотных частиц и исключает поэтому все другие тела из этого своего участка пространства, пока она там остается.
12. Продолжительность никогда не имеет двух частей, наличествующих вместе, у распространенности все части находятся вместе. Продолжительность и се часть - время есть идея исчезающего расстояния, две части которого никогда не существуют вместе, но следуют друг за другом в последовательности, между тем как распространенность есть идея пребывающего расстояния, все части которого существуют совместно и не способны к следованию друг за другом. И поэтому хотя мы и не можем постигнуть какую-нибудь продолжительность без последовательности и соединить в своих мыслях, что в настоящий момент вещь существует завтра или что она владеет сразу более чем данным моментом продолжительности, однако мы можем представить себе вечную продолжительность всемогущего совершенно отличною от продолжительности человека или всякого другого конечного существа, ибо человек не охватывает своим знанием или способ-
==254
ностью всего прошедшего или будущего; его мысли относятся только ко вчерашнему дню и не знают, что принесет с собой завтрашний . Того, что раз прошло, он никогда не может вернуть; того, что еще должно прийти, он не может сделать настоящим. То же самое, что о человеке, можно сказать о всех конечных существах: пусть они даже намного превосходят человека знанием и способностью, они не выше самой низкой твари в сравнении с самим богом. Конечное, какой бы ни было величины, не выдерживает никакого сравнения с бесконечным. Так как бесконечная продолжительность бога сопровождается бесконечным знанием и бесконечной силой, он видит все прошедшее и будущее, и то и другое отстоят от его знания не больше, отдалены от его взора не дальше настоящего: все находится под одним и тем же взором, и нет вещи, которую он не мог бы заставить существовать в любой момент, когда хочет. Так как существование всех вещей зависит от его доброй воли, все вещи существуют всякий момент, когда он считает нужным их существование. Итак, распространенность и продолжительность взаимно обнимают и охватывают друг друга: каждая часть пространства находится в каждой части продолжительности и каждая часть продолжительности - в каждой части распространенности. Мне кажется, такое сочетание двух различных идей едва ли можно найти во всем том великом разнообразии, которое мы постигаем или можем постигнуть; это может служить предметом дальнейшего размышления.
Глава шестнадцатая О ЧИСЛЕ
1. Число есть простейшая и наиболее общая идея. Среди всех наших идей нет идеи более простой и проникающей в ум большим числом путей, нежели идея единицы, или единства. В ней нет и тени разнообразия или сложности. Ее приносит с собой каждый объект, с которым имеют дело наши чувства, каждая идея в нашем разуме, каждая мысль в нашем уме. Она поэтому есть наиболее близкая нашему мышлению и по своей согласованности со всеми другими предметами наиболее общая наша идея. Число приложимо к людям, ангелам, действиям, мыслям, ко всему, что существует или что можно представлять себе.
2. Модусы числа образуются сложением. Повторяя эту идею в уме и складывая эти повторения, мы приходим к
==255
сложным идеям ее модусов. Так, прибавляя один к одному, мы получаем сложную идею пары; складывая двенадцать единиц, получаем сложную идею дюжины; так же получается двадцать, миллион и всякое другое число.
3. Каждый модус отличается от другого. Простые модусы числа из всех других суть наиболее отличающиеся друг от друга. Самое незначительное изменение - разность на единицу - делает каждое сочетание совершенно отличным как от самого близкого ему числа, так и от самого далекого. Два так же отличается от одного, как и двести; идея двойки так же отлична от идеи тройки, как величина всей Земли от величины щепотки. Не так бывает с другими простыми модусами, в которых нам не так легко, а иногда, быть может, и невозможно различить две смежные идеи, которые, однако, в действительности различаются. Кто попробует найти разницу между белым цветом этой бумаги и белым цветом ближайшего к нему оттенка? Кто может образовать различные идеи каждого самого малого увеличения протяженности?
4. Поэтому доказательства при помощи чисел суть самые точные. Ясность и определенность каждого модуса числа, отличающегося от всех других, даже самого ближайшего, заставляет меня считать доказательства при помощи чисел если не более очевидными и точными, нежели геометрические, то более общими по своему употреблению и более определенными по своему применению. Ибо идеи чисел более отчетливы и различимы, нежели идеи протяженности, в которых не так легко подметить или измерить всякое равенство и превышение; ибо наши мысли о пространстве не могут прийти к какой-нибудь определенной малой величине, за пределы которой идти нельзя, как, например, к единице, и потому не могут быть выявлены величина или соотношение какого-нибудь очень незначительного превышения. В числах, напротив, они совершенно ясны. Здесь, как уже было сказано, 91 отличается от 90 не меньше, чем от 9000, хотя 91 - ближайшее непосредственное превышение 90. Не так с протяженностью, где то, что лишь немного больше фута или дюйма, нельзя отличить от эталона фута или дюйма. Из линий, которые кажутся одинаковыми, одна может быть длиннее другой на часть, не могущую быть выраженной в числах. Никто не может указать угол, который был бы минимально больше прямого.
5. Имена необходимы для чисел. Как уже было сказано, повторением идеи единицы и соединением ее с другой
==256
единицей мы образуем из них одну совокупную идею, обозначенную именем <два>. И кто может так действовать и идти таким образом вперед, все время прибавляя по одной единице к последней полученной им совокупной идее числа, и дает ей имя, тот может считать или получать идеи для отличных друг от друга совокупностей единиц до тех пор, пока у него будет ряд имен для следующих чисел и память для удержания этого ряда с его различными именами. Ибо всякий счет есть не что иное, как постоянное прибавление по единице и сообщение каждой сумме, как охватываемой одной идеей, нового или особого названия или знака, чтобы посредством этого узнать ее (его) среди предыдущих и следующих чисел и отличать от каждого меньшего или большего множества единиц. Так что кто может прибавить единицу к единице, потом к двум и идти таким образом вперед в своем счете, все время применяя особые названия для каждого возрастания; кто может, с другой стороны, посредством вычитания единицы от каждой суммы идти назад и уменьшать их, тот способен в пределах своего языка получить все идеи чисел или те идеи, для которых у него есть имена, хотя, быть может, и не больше. Так как различные простые модусы чисел в нашем уме есть лишь столько-то сочетаний единиц, не заключающих в себе никакого разнообразия и различающихся только большей или меньшей величиной, то для каждого отдельного сочетания имена, или знаки, по-видимому, более необходимы, чем для других видов идей, ибо без таких имен, или знаков, мы едва ли можем с пользой употреблять числа при счете, особенно там, где сочетание составилось из большого числа единиц. Если соединить единицы и не дать имени, или знака, для различения именно этого сочетания, то трудно будет предохранить их от смешения в кучу.