Литмир - Электронная Библиотека
Содержание  
A
A

Но так обстоит дело далеко не всегда. Для большинства неорганических веществ о молекуле можно говорить лишь в химическом смысле этого слова. А вот мельчайшей частички таких общеизвестных неорганических веществ, как поваренная соль или кальцит, или сода, не существует. Мы не находим отдельных частичек в кристаллах (об этом будет рассказано через несколько страниц); при растворении молекулы распадаются на части.

Сахар - органическое вещество. Поэтому в воде сладкого чая "плавают" молекулы сахара. А вот в соленой воде никаких молекул поваренной соли (хлористого натрия) мы не найдем. Эти "молекулы" (приходится ставить кавычки) существуют в воде в виде атомов (а точнее, ионов - электрически заряженных атомов,- о них речь впереди).

Так же точно и в парах, и в расплавах части молекул живут самостоятельной жизнью.

Когда речь идет о силах, связывающих атомы в физическую молекулу, то такие силы называют валентными. Межмолекулярные силы являются невалентными. Однако тип кривой взаимодействия, который был показан на рис. 2.1, одинаков в обоих случаях. Различие лишь в глубине ямы. В случае валентных сил яма в сотни раз глубже.

Взаимодействие молекул

Молекулы взаимно притягиваются, в этом невозможно сомневаться. Если бы в какое-то мгновение они перестали притягиваться друг к другу, все жидкие и твердые тела распались бы на молекулы.

Молекулы взаимно отталкиваются, и это несомненно, так как иначе жидкости и твердые тела сжимались бы с необыкновенной легкостью.

Между молекулами действуют силы, во многом похожие на силы между атомами, о которых говорилось выше. Кривая потенциальной энергии, которую мы только что рисовали для атомов, правильно передает основные черты взаимодействия молекул. Однако между этими взаимодействиями имеются и существенные различия.

Сравним, например, равновесное расстояние между атомами кислорода, образующими молекулу, и атомами кислорода двух соседних молекул, притянувшихся в затвердевшем кислороде до равновесного положения. Различие будет очень заметным: атомы кислорода, образующие молекулу, устанавливаются на расстоянии 1,2 Å, атомы кислорода разных молекул подходят друг к другу на 2,9 Å.

Подобные результаты получаются и для других атомов. Атомы чужих молекул устанавливаются дальше один от другого, чем атомы одной молекулы. Поэтому молекулы легче оторвать одну от другой, чем атомы от молекулы, причем различия в энергиях много больше разницы в расстояниях. Если энергия, необходимая для разрыва связи между атомами кислорода, образующими молекулу, составляет около 100 ккал/моль, то энергия на растаскивание молекул кислорода меньше 2 ккал/моль.

Значит, на кривой потенциальной энергии молекул "яма" лежит дальше от вертикальной оси и, кроме того, "яма" гораздо менее глубока.

Однако этим не исчерпывается различие взаимодействия атомов, образующих молекулу, и взаимодействия молекул.

Химики показали, что атомы сцепляются в молекулу с вполне определенным числом других атомов. Если два атома водорода образовали молекулу, то третий атом уже не присоединится к ним. Атом кислорода в воде соединен с двумя атомами водорода и присоединить к ним еще один невозможно.

Ничего подобного мы не находим в межмолекулярном взаимодействии. Притянув к себе одного соседа, молекула ни в какой степени не теряет своей "притягательной силы". Подход соседей будет происходить до тех пор, пока хватит места.

Что значит "хватит места"? Разве молекулы - это что-то вроде яблок или яиц? Конечно, в некотором смысле такое сравнение оправдано: молекулы - физические тела, обладающие определенными "размерами" и "формой". Равновесное расстояние между молекулами и есть не что иное, как "размеры" молекул.

Как выглядит тепловое движение

Взаимодействие между молекулами может иметь большее или меньшее значение в "жизни" молекул.

Три состояния вещества - газообразное, жидкое и твердое - различаются одно от другого той ролью, которую в них играет взаимодействие молекул.

Слово "газ" придумано учеными. Оно произведено от греческого слова "хаос" - беспорядок.

И действительно, газообразное состояние вещества является примером существующего в природе полного, совершенного беспорядка во взаимном расположении и движении частиц. Нет такого микроскопа, который позволил бы увидеть движение газовых молекул, но, несмотря на это, физики могут достаточно детально описать жизнь этого невидимого мира.

В кубическом сантиметре воздуха при нормальных условиях (комнатная температура и атмосферное давление) находится огромное число молекул, примерно 2,5*1019 (т. е. 25 миллиардов миллиардов молекул). На каждую молекулу приходится объем 4*10-20 см3, т. е. кубик со стороной примерно 3,5*10-7 см = 35 Å. Однако молекулы очень малы. Например, молекулы кислорода и азота - основная часть воздуха - имеют средний размер около 4 Å.

Таким образом, среднее расстояние между молекулами в 10 раз больше размера молекулы. А это в свою очередь означает, что средний объем воздуха, на который приходится одна молекула, примерно в 1000 раз больше объема самой молекулы.

Представьте себе ровную площадку, на которой беспорядочно разбросаны монетки, причем на площадь в 1 м2 приходится в среднем сто монеток. Это значит одна-две монетки на страницу книги, которую вы читаете. Приблизительно так же редко расположены газовые молекулы.

Каждая молекула газа находится в состоянии непрерывного теплового движения.

Проследим за одной молекулой. Вот она стремительно движется куда-то вправо. Если бы на ее пути не встретилось препятствий, то молекула с той же скоростью продолжала бы свое движение по прямой линии. Но путь молекулы пересекают ее бесчисленные соседи. Столкновения неминуемы, и молекулы разлетаются, как два столкнувшихся биллиардных шара. В какую сторону отскочит наша молекула? Приобретет или потеряет она свою скорость? Все возможно: ведь встречи могут быть самые различные. Удары возможны и спереди и сзади, и справа и слева, и сильные и слабые. Ясно, что, подвергаясь таким беспорядочным соударениям при этих случайных встречах, молекула, за которой мы наблюдаем, будет метаться во все стороны по сосуду, в котором заключен газ.

Какой путь удается молекулам газа пробежать без столкновения?

Он зависит от размеров молекул и от плотности газа. Чем больше размеры молекул и число их в сосуде, тем чаще они будут сталкиваться. Средняя длина пути, пробегаемого молекулой без соударения,- она называется средней длиной пробега - равна при обычных условиях 11*10-6 см = 1100 Å для молекул водорода и 5*10-6 см=500 Å для молекул кислорода. 5*10-6 см - двадцатитысячная доля миллиметра, расстояние очень малое, но по сравнению с размерами молекул оно далеко не мало. Пробегу 5*10-6 см для молекулы кислорода соответствует в масштабе у биллиардного шара расстояние в 10 м.

Стоит обратить внимание на особенности движения молекул в сильно разреженном газе (вакууме). Движение молекул, "образующих вакуум", меняет свой характер, когда длина свободного пробега молекулы становится больше размеров сосуда, в котором находится газ. Тогда молекулы редко сталкиваются между собой и совершают свое путешествие прямыми зигзагами, ударяясь то об одну, то о другую стенку сосуда.

Как только что было сказано, в воздухе при атмосферном давлении длина пробега равна 5*10-6 см. Если увеличить ее в 107 раз, то она составит 50 см, т. е. будет заметно больше среднего по размерам сосуда. Поскольку длина пробега обратно пропорциональна плотности, а следовательно, и давлению, то давление для этого должно составлять 10-7 атмосферного или примерно 10-4 мм рт. ст.

6
{"b":"230540","o":1}