Все наблюдаемые спиральные туманности кажутся удаляющимися от нашей Галактики со скоростью, возрастающей пропорционально расстоянию этих туманностей от нее.
Удаление туманностей было обнаружено в 1919 г.; закон пропорциональности между скоростью и расстоянием был установлен американским астрономом Хабблом в 1929 г. Самые далекие от нас туманности, еще доступные для исследований, убегают от нас с исключительно большой скоростью, достигающей 65 С00 км/сек. Если допустить существование гораздо более далеких туманностей, то они должны были бы удаляться от нас со скоростью, превышающей скорость света (300 000 км/сек). Это противоречит теории относительности, согласно которой никакие тела не могут перемещаться с такой скоростью, поскольку их масса становится тогда бесконечно большой. Если же предположить, следуя многим ученым, специалистам в теории относительности, что противоречие с теорией относительности является лишь кажущимся, то можно придти к выводу, что от таких далеких галактик к нам не может дойти никакое излучение. Наконец, из факта удаления всех туманностей от пашей Галактики можно сделать вывод, что они должны удаляться также и друг от друга по такому же закону. Для астронома, находящегося на другой галактике, это явление имело бы точно такой же вид, как и для нас, что сразу же непосредственно доказывает отсутствие привилегированного положения нашего Млечного Пути.
Таковы факты. Посмотрим теперь, какие объяснения даются этим фактам.
Релятивистское объяснение Фридмана — Леметра
В то самое время, когда ученые задавали себе вопрос, является ли смещение спектральных линий в спектрах галактик следствием их действительного удаления и нельзя ли его объяснить другой причиной, влияющей на световые лучи на их пути между галактиками, была создана новая теория основывающаяся на некоторых результатах Эйнштейна. Эта теория определенно высказывается в пользу первой гипотезы и утверждает, что взаимное удаление спиральных туманностей друг от друга является реальным.
Теория расширяющегося пространства была развита сначала советским физиком Фридманом (1922) на строго научной основе. Затем бельгийский аббат Леметр (1925–1927) принял ее и сделал из нее теологические выводы. Она была довольно мало известной в научных кругах до 1930 г. Но когда в 1930 г. эта теория была одобрена и принята Эддингтоном, она сразу же приобрела значительную популярность.
Леметр исходил из представления о вселенной, наиболее распространенного среди ученых, чрезмерно увлекающихся необоснованными выводами из теории относительности. Было бы слишком долго детально объяснять, в чем заключается это представление, о котором до сих пор мы делали лишь краткие намеки. Мы удовлетворимся лишь тем, что напомним о некоторых существенных пунктах, делая при этом необходимое различие между результатами, относящимися к локальным (местным) свойствам пространства и времени и представляющими собой научные достижения типично диалектического характера, и «моделями», посредством которых некоторые космологи, основываясь на систематических упрощениях и на рискованных обобщениях, некоторые ученые претендуют на схематическое изображение вселенной в целом.
Согласно принципам теории относительности Эйнштейна время и пространство связаны друг с другом и связаны с явлениями, в них происходящими, т. е. другими словами, связаны с материей в самом общем смысле этого понятия. Время и пространство не являются лишь неподвижным фоном, на котором протекают различные явления. Величина промежутка времени между двумя событиями изменяется, например, в зависимости от того, какими часами мы при этом пользуемся: движущимися или неподвижными относительно той системы, где происходят эти события. Свойства пространства настолько тесно связаны со свойствами времени, что следует рассматривать нашу вселенную, как обладающую не тремя, а четырьмя измерениями, из которых три — пространственные, а одно — временное. Но четвертое измерение — время, не играет при вычислениях точно такой же роли, как и остальные три измерения. Вместо того, чтобы говорить отдельно о пространстве и о времени, приходится говорить только об одном пространстве — времени. Но сами свойства этого пространства — времени зависят от количества и распределения материи, содержащейся в нем. В зависимости от того, больше или меньше имеется материи в данной области, пространство — время будет более или менее «искривлено» в этой области. Конкретно это выразится существованием в окрестности данной области большего или меньшего поля сил, притягивающих соседние материальные массы, большим или меньшим отклонением световых лучей и т. д.
Наконец, Эйнштейн обратился также и к проблемам космологии, т. е. к исследованию структуры вселенной, рассматриваемой как целое. Он заключил, что пространство, которое рассматривалось, начиная с Ньютона, как бесконечное, должно быть конечным, не являясь, однако, ограниченным: другими словами, луч света никогда не достигнет какой-либо «границы», но он не может бесконечно удалиться от начального пункта и в конце концов возвратится к этому пункту.[114]
В пространстве с меньшим числом измерений, а именно с двумя, человек, который будет идти все время вперед по поверхности шарообразной Земли, никогда не придет к ее «краю» (что имело бы место, например, в случае плоской дискообразной Земли), а возвратится на то же место, откуда он вышел, описав по земному шару круг. Наш путешественник мог бы обойти всю поверхность Земли, узнать, что она содержит конечное число квадратных километров, что на ней обитает конечное число жителей. Все на Земле казалось бы ему конечным, но он все же не обнаружил бы никаких ее границ.
Точно так же и во вселенной человек может согласно этим теориям, по крайней мере мысленно, описать и перечислить все звезды и все туманности, поскольку их общее число все же конечно. Однако при этой переписи, если ее выполнить, перемещаясь между небесными телами с невообразимо большой скоростью, никогда нельзя было бы достичь места, где вселенная кончалась бы и начиналось «нечто другое». Мы не будем продолжать наше сравнение, которое станет уже неточным, если мы пойдем по этому пути далее.[115] Действительно, наш предполагаемый путешественник, обегающий поверхность Земли с целью измерения и перечисления всего, что там находится, может покинуть эту поверхность. Он может подняться в воздух, он отправится, возможно, когда-нибудь в межзвездное путешествие. Но наш межзвездный путешественник не сможет никогда покинуть вселенную; он находится в ней и обязательно там останется. Нельзя сказать, впрочем, что он является в некотором роде пленником, поскольку для него не существует ничего вне вселенной.
Работы Фридмана и Леметра, а также более поздние работы Гекмана, де Ситтера и самого Эйнштейна основываются главным образом на следующем теоретическом открытии.
Математические уравнения, которым должна удовлетворять вселенная Эйнштейна, не требуют обязательной устойчивости (т. е. неизменности во времени) вселенной. Существует целый ряд решений этих уравнений, согласно которым вселенная не может сохранять постоянные размеры, а должна обязательно или растягиваться или сжиматься, или попеременно то растягиваться, то сжиматься и не может оставаться в одном и том же состоянии (в настоящее время она расширяется). Говорят также, что колеблется «радиус» вселенной, характеризующий ее размеры так же, как, например, радиус Земли характеризует величину поверхности Земли. Впрочем, само значение этого радиуса очень трудно определить вследствие той неуверенности, которая имеет место сегодня в отношении фундаментальных данных относительно вселенной в целом. Крайние оценки колеблются между несколькими миллиардами и сотнями миллиардов световых лет (наиболее поздние оценки входят, в общем, в число наименьших).
Конкретный пример (в системе, имеющей на одно измерение меньше) позволит возможно лучше понять, в чем заключается это растягивание вселенной. Рассмотрим мыльный пузырь, к которому приклеилось несколько пылинок и предположим, что этот пузырь раздувается; его радиус увеличивается и взаимные расстояния между различными пылинками, находящимися на поверхности пузыря, увеличиваются все в одном и том же отношении. Если бы на одной из этих пылинок обитал воображаемый микроскопический астроном, который мог бы измерять расстояния на поверхности, не имея, однако, возможности покинуть эту поверхность, то он обнаружил бы, что все остальные пылинки удаляются от той, на которой он обитает. Он установил бы, что чем дальше находится от него пылинка, тем быстрее она удаляется; он пришел бы к выводу о пропорциональности скоростей удаления пылинок их расстояниям до его собственной пылинки. Однако это сравнение также не следует продолжать далее. Когда мы рассматриваем мыльный пузырь, мы сразу непосредственно видим, в чем заключается, если можно так выразиться, изменение его радиуса; напротив, невозможно чувственно-наглядно представить, в чем заключается растяжение или сжатие вселенной. Единственный конкретный смысл, который имеют для нас эти слова, передается наблюдаемыми следствиями предполагаемого растяжения или сжатия: удаление или, напротив, приближение спиральных туманностей.