Литмир - Электронная Библиотека
A
A

За своїм характером наш Всесвіт плюралістичний, комплексний. Структури можуть зникати, але можуть і виникати. Одні процеси на даному рівні знань допускають опис за допомогою детермінованих рівнянь, інші вимагають застосування вірогідних міркувань.

Як можна подолати явне протиріччя між детермінованим і випадковим? Адже ми живемо в єдиному світі. Як буде показано далі, ми лише тепер починаємо заслужено оцінювати значення всієї низки проблем, що пов'язані з необхідністю та випадковістю. Крім того, ми надаємо абсолютно іншого, а іноді зовсім протилежного, ніж класична фізика, значення різним спостереженням та описаним нами явищам. Ми вже згадували про те, що за існуючою раніше традицією фундаментальні процеси було прийнято вважати детермінованими і зворотними, а процеси, так чи інакше пов'язані з випадковістю чи незворотністю, трактувати як винятки із загального правила. Зараз ми повсюди бачимо, наскільки важливу роль відіграють незворотні процеси, флуктуації. Моделі, розглядом яких займалась класична фізика, відповідають, як ми зараз розуміємо, лише граничним ситуаціям. Їх можна створювати штучно, розмістивши систему в ящик і дочекавшись, поки вона не набуде стану рівноваги.

Штучне може бути детермінованим і зворотним. Природне ж неодмінно містить елементи випадковості і незворотності. Це зауваження приводить нас до нового погляду на роль матерії у Всесвіті. Матерія – вже не пасивна субстанцiя, описувана в рамках механiстичної картини свiту, їй також властива спонтанна активнiсть. Вiдмiннiсть нового погляду на свiт вiд традицiйного така глибока, що, як вже згадувалося в передмовi, ми можемо з повною пiдставою говорити про новий дiалог людини з природою.

Два нащадки теорiї теплоти по прямiй лiнiї — наука про перетворення енергії з однiєї форми в іншу i теорiя теплових машин — спiльними зусиллями привели до створення першої „некласичної науки” — термодинамiки. Жоден з внескiв в скарбницю науки, внесених термодинамiкою, не може порiвнятися по новизнi iз знаменитим другим початком термодинамiки, з появою якого у фiзику вперше ввiйшла „стрiла часу”. Введення односторонього направленого часу було складовою частиною бiльш широкого руху захiдноєвропейської думки. ХIХ столiття по праву може бути названо столiттям еволюцiї: бiологiя, геологiя i соцологiя стали надавати в ХIХ ст. все бiльше уваги вивченню процесiв виникнення нових структурних елементiв, збiльшення тяжкостi. Що ж стосусться термодинамiки, то в її основі лежить вiдмiннiсть мiж двома типами процесiв: зворотними процесами, не залежними вiд напряму часу, i незворотними процесами, залежними вiд напряму часу. З прикладами зворотних i незворотних процесiв ми познайомимося надалi. Поняття ентропії для того i було введене, щоб вiдрiзняти зворотні процеси вiд незворотних: ентропiя зростає тiльки в результатi незворотних процесiв.

Протягом ХIХ ст. в центрi уваги знаходилося дослiдження кiнцевого стану термодинамiчної еволюцiї. Термодинамiка ХIХ ст. була рiвноважною термодинамiкою. На нерiвноважнi процеси дивилися як на другоряднi деталi, обурення, дрiбнi неiстотнi подробицi, не заслуговуючi спецiального вивчення. В даний час ситуацiя повнiстю змінилася. Нинi мі знаємо, що оддалiк рiвноваги можуть спонтанно виникати новi типи структур. В сильно нерiвноважних умовах може скоюватися перехiд вiд безладдя, теплового хаосу, до порядку. Можуть виникати новi динамічнi стани матерiї, що вiдображають взаємодiю даної системи з навколишнiм середовищем. Цi новi структури ми назвали дисипативними структурами, прагнучи пiдкреслити конструктивну роль дисипативних процесiв в їх освiтi.

В нашiй книзi наведенi деякi з методiв, розроблених останнiми роками для опису того, як виникають i еволюцiонують дисипативнi структури. При викладi їх ми вперше зустрiнемося з такими ключовими словами, як „нелінійність”, „нестiйкiсть” „флуктуація”, що проходять через всю книгу, як лейтмотив. Ця трiада почала проникати в нашi пгляди на свiт i за межами фiзики i хiмiї.

При обговореннi протилежностi мiж природними i гуманiтарними науками ми процитували слова Ісаї Берлiна. Специфiчне i унiкальне Берлiн протиставляв тому, що повторюється i загальному. Чудова особливiсть розглянутих нами процесiв полягає в тому, що при переходi вiд рiвноважних умов до сильно нерiвноважних ми переходимо вiд того, що повторюється i загального до унiкального i специфiчного.

Дiйсно, закони рiвноваги мають велику спiльнiсть: вони унiверсальнi. Що ж до поведiнки матерії поблизу стану рiвноваги, то йому властива «повторюванiсть». В той же час оддалiк рiвноваги починають дiяти рiзнi механiзми, вiдповiднi можливостi виникнення дисипативних структур рiзних типiв. Наприклад, оддалiк рiвноваги ми можемо спостерiгати виникнення хiмiчного годинника — хiмiчних реакцiй з характерною когерентною перiодичною змiною концентрацiї реагентiв. Оддалiк рiвноваги спостерiгаються також процеси самоорганiзацiї що приводять до утворення неоднорiдних структур — нерiвноважних кристалiв.

Слiд особливо пiдкреслити. що така поведiнка сильно нерiвноважних систем досить несподiвана. Дiйсно, кожний з нас iнтуїтивно уявляє собi, що хімічна реакцiя протiкає приблизно таким чином: молекули «плавають» у просторi, стикаються i, перебудовуючись в результатi зiткнення, перетворюються на нові молекули. Хаотичну поведiнку молекул можна уподiбнити картинi, яку малюють атомiсти, описуючи рух танцюючих в повiтрi порошинок. Але у разi хiмiчного годинника ми стикаємося з хiмiчною реакцiєю, що протiкає зовсiм не так, як нам пiдказує iнтуїцiя. Дещо спрощуючи ситуацiю, можна стверджувати, що у разi хiмiчного годинника всi молекули змiнюють свою хiмiчну тотожність одночасно, через правильнi промiжки часу. Якщо уявити собi, що молекули початкової речовини i продукту реакцiї забарвленi вiдповiдно в синiй i червоний кольори, то ми побачили б, як змінюється їх колiр в ритмi хiмiчного годинника.

Ясно, що таку перiодичну реакцiю неможливо описати, виходячи з iнтуїтивних уявлень про хаотичну поведiнку молекул. Виник порядок нового, раніше невiдомого типу. В даному випадку доречно говорити про нову когерентнiсть, про механiзм «комунiкацiї» між молекулами. Але зв’язок такого типу може виникати тiльки в сильно нерiвноважних умовах. Цікаво відмітити, що подібний зв'язок широко поширений в світі живого.Його існування можна прийняти за саму основу визначення біологічної системи.

Необхідно також додати, що тип диссипативної структури в значній мірі залежить від умов її утворення. Істотну роль у відборі механізму самоорганізації можуть відігравати зовнішні поля, наприклад, гравітаційне поле Землі, чи магнітне поле.

Ми починаємо розуміти, яким чином, виходячи з хімії, можливо побудувати складні структури, складні форми, у тому числі і такі, які здатні стати попередниками живого. В дуже нерівноважних явищах достовірно встановлено вельми важливу і несподівану властивість матерії: надалі фізика з виправданою підставою може описувати структури як форми адаптації системи до зовнішніх умов. Зі свого роду механізмом передбіологічної адаптації ми зустрічаємося в найпростіших хімічних системах. На антропоморфній мові можна сказати, що у стані рівноваги матерія „сліпа” тоді як в сильно нерівноважних умовах вона набуває здатність сприймати відмінності в зовнішньому світі (наприклад, слабкі гравітаційні і електричні поля) та „враховувати” їх в своєму функціонуванні.

Зрозуміло, проблема виникнення життя і зараз лишається вельми складною, і ми не очікуємо в недалекому майбутньому якого-небудь простого її вирішення. Проте при нашому підході життя перестає протистояти „звичайним” законам фізики, боротися проти них, щоб уникнути передбачуваної долі — загибелі. Навпаки, життя постає перед нами як своєрідний прояв тих самих умов, в яких знаходиться наша біосфера, у тому числі нелінійності хімічних реакцій і сильно нерівноважних умов накладених на біосферу сонячною радіацією.

Ми детально обговорюємо поняття, що дозволяють описувати утворення диссипативних структур, наприклад поняття теорії біфуркацій. Потрібно відмітити, що поблизу точок біфуркації в системах спостерігаються значні флуктуації. Такі системи ніби „коливаються” перед вибором одного з декількох шляхів еволюції, і знаменитий закон великих чисел, якщо розуміти його як завжди, перестає діяти. Невелика флуктуація може послужити початком еволюції в абсолютно новому напрямку, який різко змінить всю поведінку макроскопічної системи. Неухильно напрошується аналогія з соціальними явищами і навіть з історією. Далекі від думки порівнювати випадковість і необхідність, ми вважаємо, що обидва аспекти відіграють важливу роль в описі нелінійних сильно нерівноважних систем.

105
{"b":"224791","o":1}