«На орбите спутник пробудет полгода, — пояснил старший научный сотрудник Института космических исследований РАН, где был сконструирован и построен «Колибри», Михаил Ноздрачев. — За это время школьники двух московских школ, межшкольного центра города Обнинска, а также двух австралийских школ в Сиднее смогут с ним связаться и самостоятельно определить параметры его орбиты, снять научную информацию с приборов или даже просто послушать «голос» спутника с помощью обычного УКВ-приемника»…
Ребята смогут также заниматься изучением магнитного поля Земли и радиационной обстановки в различных частях планеты. Юные исследователи впервые будут работать напрямую с космическим аппаратом через систему управления спутником, расположенную в Калуге, на базе научно-исследовательской Лаборатории авиационной и космической техники. При удачном осуществлении этого проекта ИКИ в дальнейшем планирует разработать для старшеклассников серию таких спутников. По мнению ученых, это будет способствовать привлечению молодежи к исследованию космического пространства.
В.БЕЛОВ
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Плазменные кристаллы из звездной пыли
Вернувшийся недавно на Землю российско-французский экипаж экспедиции посещения Международной космической станции среди прочего выполнил интересные эксперименты с «плазменными кристаллами». Об этом перспективном направлении в физике рассказывает научный руководитель программы академик В.Е. ФОРТОВ.
— Владимир Евгеньевич, прежде всего давайте поговорим о том, почему эксперименты непременно нужно было проводить в космосе?
— Просторы Вселенной отнюдь не пусты. В космосе не отыскать и кубического метра пространства, в котором не промелькнуло бы несколько молекул или пылинок. Девяносто девять процентов межзвездной материи составляют молекулы газа; еще один процент — пыль, состоящая предположительно из частиц графита и силикатов.
Межзвездная пыль — ровесница Вселенной. Она возникла еще в момент Большого взрыва. Кроме того, огромные количества пыли выбрасываются в пространство после вспышек сверхновых. Пылевая завеса защищает новорожденные звезды от жаркого излучения соседних. Так в межзвездный простор возвращается материя, из которой когда-то сгустилась звезда.
Ученые подсчитали: типичная спиральная галактика содержит в 100 млн раз больше пыли, чем весит Солнце. Из этой пыли можно было бы сформировать многие сотни миллиардов планет, похожих на нашу Землю.
В окрестностях Солнца межзвездная материя плотнее, чем за ее пределами. Она состоит из газа и крупных пылинок (их длина достигает миллиметра). Эта пыль образуется в поясе астероидов, где миллиарды малых планет постепенно перетирают друг друга. Кометы тоже потенциальные поставщики пыли. Оказавшись близ Солнца, они могут терять до нескольких тонн массы в секунду. Образуется характерный длинный хвост.
Однако в Солнечной системе пыли не прибавляется. Дело в том, что наше светило притягивает частицы к себе. Планеты тоже действуют как пылесосы. Только на Землю ежесуточно оседает 45 тонн пыли, но лишь при падении крупных пылинок мы замечаем на ночном небосклоне «падающую звезду». Причем каждая из мириадов пылинок напоминает уникальный космический «холодильник»: в нем хранится вещество, из которого 4,5 млрд лет назад возникла наша планета. Впоследствии из этого «праха» родилось и человечество.
— Вы нарисовали весьма впечатляющую картину мироздания. Но какое место в ней занимают ваши исследования? При чем здесь «плазменные кристаллы»? Что они собой представляют?
— Пока человек не способен вмешиваться в галактические процессы. Тем не менее, в наши дни зарождается новое научное направление в физике плазмы, которое позволит нам использовать космическую пыль в своих целях.
Суть его в том. что тяжелые частички, масса которых значительно превосходит массу ионов, могут быть сильно заряжены. На каждой частичке может собраться заряд, равный числу электронов, и тогда между этими частичками возникает очень сильное кулоновское взаимодействие. И они выстраиваются в своеобразный кристалл.
Первые эксперименты по созданию таких кристаллов начались лет 5 назад одновременно в Германии и России. Но поскольку частички относительно тяжелые, гравитация сильно искажает форму и структуру плазменных кристаллов. Поэтому важно было от нее избавиться.
Поначалу опыты в невесомости ставили на самолетах: есть такие параболические траектории, когда удается получать невесомость в течение 20 минут. Потом часть экспериментов провели на геофизических ракетах, которые, также находясь в режиме свободного падения, позволяли получать микрогравитационные условия.
Еще мы провели три эксперимента на орбитальной станции «Мир», пока она функционировала. И вот сейчас работает уже вторая экспедиция на Международной космической станции. На российском сегменте есть установка, на которой и проводятся эксперименты.
— И что же они показали?
— Выяснилось, что плазменный кристалл, получающийся в космосе, оказывается более крупным. Расстояние между соседними частицами тоже больше — порядка одного миллиметра. Да и сами частицы крупнее…
На будущее намечена большая международная программа работ, которую поддерживает Европейское космическое агентство, Российское космическое агентство и НПО «Энергия». У ученых есть немало идей, как стабилизировать кристаллы в условиях невесомости, как их растить, как исследовать процессы фотоионизации в космосе.
— Сейчас рано говорить о прикладном значении этих работ. Но, в принципе, где они могут найти применение в будущем?
— Одна из идей — использовать радиоактивную пыль для того, чтобы получать компактные источники энергии для космических нужд. Есть мысль использовать эти структуры в качестве химических катализаторов. Возможно использование «плазменных кристаллов» в микроэлектронике.
Кроме того, с помощью электрических полей мы надеемся выносить радиоактивную пыль из устройств типа ТОКАМАКов, где она накапливается за время работы. Ну, и конечно, важно, что плазменная пыль обладает свойством разделять разные фракции. Она работает как своеобразное сито, позволяющее разделить смесь по размерам частиц. И это тоже актуальная задача в технике.
Беседу вел Владимир БЕЛОВ
Пока ковер-самолет не придуман…
Пожар в Останкино, трагедия в Нью-Йорке…
Эти события заставили изобретателей с новой энергией вернуться к старой проблеме: как оперативно спасти людей, оказавшихся в горящем высотном сооружении?
«Лучше всего здесь подошел бы ковер-самолет, — мрачно сострил один из экспертов. — Компактная штука — раскатал и улетел»… Но такие ковры, к сожалению, пока встречаются лишь в сказках. А что могут предложить изобретатели?
Спасение в маховике?
Оригинальное спасательное средство создали ученые НИИ машиноведения, доктор технических наук Аркадий Бессонов и инженер-конструктор Михаил Очан. По внешнему виду оно представляет собой нечто вроде большой рулетки в футляре размером с суповую тарелку.
Устройство крепится над оконным проемом и позволяет в случае необходимости быстро и безопасно спустить с высоты до 150 м груз массой до 100 кг. Спускающемуся человеку достаточно пристегнуть карабин спасательного пояса к концу выходящей из футляра металлической ленты и прыгнуть вниз. Лента разматывается с постоянной скоростью и доставляет человека вниз без травм и ушибов. А как только карабин отстегнут, лента снова уходит в футляр. И вот она уже готова к спуску очередного спасаемого.