3. Формирование неклассической логики
Непосредственным результатом революции, произошедшей в логике в конце XIX – начале XX вв., было возникновение логической теории, получившей со временем название классической логики.
Классическая логика ориентировалась главным образом на анализ математических рассуждений. С этим и связаны многие ее особенности, нередко расценивающиеся теперь как ее недостатки. В процессе развития она оказалась одной из многих логических теорий. Но это не означает, что теперь она представляет только исторический интерес. Классическая логика по-прежнему остается ядром современной логики, сохраняющим как теоретическую, так и практическую значимость.
Разнообразные неклассические направления, возникшие позднее, составляют в совокупности то довольно неопределенное и разнородное целое, которое принято объединять под именем неклассической логики. Некоторые из этих направлений формировались в оппозиции к классической логике. Но для всех она была образцом подхода к логическому анализу мышления, первой теорией, последовательно и полно реализовавшей программу математизации логики.
Критика классической логики началась уже в начале этого века и велась с разных сторон. Результатом ее явилось возникновение целого ряда новых разделов современной логики. В ряде случаев оказалось, что реализованные при этом идеи активно обсуждались еще в античной и средневековой логике, но были основательно забыты в Новое время.
В 1908 г. Л. Брауэр, голландский математик и логик, подверг сомнению неограниченную приложимость в математических рассуждениях классических законов исключенного третьего, (снятия) двойного отрицания, косвенного доказательства. Одним из результатов анализа таких рассуждений явилось возникновение интуиционистской логики, сформулированной в 1930 г.
Еще в 1912 г. американский логик и философ К. И. Льюис обратил внимание на т. н. парадоксы импликации, характерные для формального аналога условного высказывания в классической логике – материальной импликации. Льюис разработал первую неклассическую теорию логического следования, в основе которой лежало понятие строгой импликации. Наибольшую известность из них получила релевантная логика, развитая американскими логиками А. Р. Андерсоном и Н. Д. Белнапом.
На рубеже 1920-х гг. были построены первые в современной логике модальные логики, рассматривавшие понятия необходимости, возможности, случайности и т. п. Тем самым была возрождена тема модальностей, которой активно занимались еще Аристотель и средневековые логики.
В 1920-е гг. начали складываться также многозначная логика (предполагающая, что утверждения являются не только истинными или ложными, но могут иметь и другие истинностные значения), деонтическая логика (изучающая логические связи нормативных понятий), логика абсолютных оценок (исследующая логическую структуру и логические связи оценочных высказываний), вероятностная логика (использующая теорию вероятностей для анализа проблематичных рассуждений) и др. Все эти новые разделы логики не были непосредственно связаны с математикой, в сферу логического исследования вовлекались уже естественные и гуманитарные науки.
В дальнейшем сложились логика времени (описывающая логические связи высказываний, у которых временной параметр включается в логическую форму), паранепротиворечивая логика (не позволяющая выводить из противоречия все, что угодно), эпистемологическая логика (изучающая понятия «опровержимо», «неразрешимо», «доказуемо», «убежден», «сомневается» и т. п.), логика предпочтений (имеющая дело с понятиями «лучше», «хуже» и «равноценно»), логика изменения (говорящая об изменении и становлении), логика причинности (изучающая утверждения о детерминизме и причинности) и др.
4. Модальная логика и другие разделы неклассической логики
Стремление обогатить язык логики и расширить ее возможности привело к возникновению модальной логики. Ее задача – анализ рассуждений, в которых встречаются модальные понятия, служащие для конкретизации устанавливаемых нами связей, их оценки с той или иной точки зрения.
Еще Аристотель начал изучение таких наиболее часто встречающихся модальных понятий, как «необходимо», «возможно», «случайно». В Средние века круг модальностей был существенно расширен, и в него вошли также «знает», «полагает», «обязательно», «разрешено» и т. д.
Число групп модальных понятий и выражаемых ими точек зрения не ограничено. Современная логика выделяет наиболее важные из этих групп и делает их предметами специального исследования. Она изучает также общие принципы модальной оценки, справедливые для всех групп модальных понятий.
В последние десятилетия модальная логика бурно развивается, вовлекая в свою орбиту все новые группы модальных понятий. Существенно усовершенствованы способы ее обоснования. Это придало модальной логике новое дыхание и поставило ее в центр современных логических исследований.
Все модальные понятия можно разделить на абсолютные и сравнительные. Первые представляют собой характеристики, приложимые к отдельным объектам, вторые относятся к парам объектов; первые являются свойствами объектов, вторые – отношениями между объектами.
Абсолютными модальными понятиями являются понятия «хорошо» и «плохо», сравнительными – понятия «лучше» и «хуже». С точки зрения какой-то системы ценностей невыполнение обещания можно охарактеризовать как негативно ценное («плохое»), сказав: «Плохо, что данное обещание не выполнено», т. е. приписав определенное свойство конкретному обещанию. Но можно также установить ценностное отношение между невыполнением обещания и, допустим, воздержанием от обещания, сказав: «Лучше не давать обещание, чем не выполнить его».
В логике времени к абсолютным модальностям относятся понятия «было» («всегда было»), «есть» и «будет» («всегда будет»). Сравнительными модальными понятиями являются «раньше», «позже» и «одновременно».
В логике оценок наряду с абсолютными оценочными понятиями «хорошо», «безразлично» и «плохо» исследуются также сравнительные оценочные понятия «лучше», «равноценно» и «хуже».
В логике причинности изучаются отношения «…есть причина…» и «…есть следствие…», которые можно рассматривать как сравнительные каузальные модальности.
В логике истины к абсолютным модальностям относятся понятия «истинно», «неопределенно» и «ложно». Этим понятиям можно поставить в соответствие сравнительное модальное понятие вероятности: «…более вероятно, чем…».
В теории логических модальностей абсолютными понятиями являются «логически необходимо», «логически возможно», «логически невозможно». Им можно поставить в соответствие в качестве сравнительного модального понятия понятие «…логически следует…».
В логике изменения наряду с абсолютным понятием «возникает» исследуется также сравнительное понятие «…переходит в…». («Возникает объект А» и «Состояние А переходит в состояние В».)
Абсолютные модальные понятия иногда называются А-понятиями, сравнительные – В-понятиями. А– и В-понятия не сводятся друг к другу. Они представляют собой как бы два разных видения мира, два взаимодополнительных способа описания одних и тех же вещей и событий. «хорошо» не определяется через «лучше», «было» не определяется через «раньше» и т. д. Логика абсолютных модальных понятий не сводится к логическим теориям сравнительных понятий, и наоборот.
Из сравнительных модальных понятий относительно подробно исследованы пока только аксиологические модальности «лучше», «равноценно», «хуже».
5. Логика оценок и логика норм
Теория, включающая логику оценок и логику норм, сформировалась сравнительно недавно. Многие ее проблемы еще не достаточно ясны, ряд важных ее результатов вызывает споры. Но ясно, что рассуждения о ценностях и нормах не выходят за сферу «логического» и могут успешно анализироваться и описываться с помощью методов логики.