Такие нарушения теперь называют каналопатиями, или нарушениями функции ионных каналов. К примеру, наследственная идиопатическая эпилепсия (наследственная эпилепсия новорожденных) оказалась связана с мутациями в генах, кодирующих белок калиевого канала. Последними достижениями в исследовании каналопатий и разработкой специфических методов лечения этих нарушений мы непосредственно обязаны обширному запасу знаний о работе ионных каналов, накопленному благодаря Ходжкину и Хаксли.
6. Разговор нервных клеток
Я пришел в лабораторию Гарри Грундфеста в 1955 году, вскоре после того, как в нейробиологии возник серьезный спор о том, как нейроны передают сигналы друг другу. Эпохальные работы Ходжкина и Хаксли позволили разрешить давнюю загадку, как электрические сигналы возникают в нейронах, но как они распространяются между нейронами? Чтобы один нейрон мог “говорить” с другим, он должен посылать сигнал через синапс, промежуток между клетками. Что же это за сигнал?
Грундфест и другие ведущие нейрофизиологи того времени твердо верили, пока в начале пятидесятых их представления не опровергли, что этот краткий сигнал, передающийся через промежуток между клетками, имеет электрическую природу, что потенциал действия в постсинаптическом нейроне начинается благодаря электрическому току, вызванному потенциалом действия в пресинаптическом нейроне. Но начиная с конца двадцатых стали накапливаться данные, свидетельствующие о том, что сигнал, передающийся между некоторыми нервными клетками, может иметь химическую природу. Эти данные были получены в ходе исследований нейронов вегетативной или автономной нервной системы. Вегетативная нервная система считается частью периферической, потому что тела ее нейронов располагаются в скоплениях, называемых периферическими вегетативными ганглиями, которые находятся возле самого спинного мозга и мозгового ствола, но за их пределами. Автономная нервная система управляет жизненно важными непроизвольными действиями, такими как дыхание, сердцебиение, поддержание кровяного давления и пищеварение.
Эти новые данные положили начало химической теории синаптической передачи и привели к спору, который в шутку называли “суп или искра”: “искровики”, такие как Грундфест, считали, что синаптическая передача имеет электрическую природу, “суповики” – что химическую.
Химическая теория синаптической передачи возникла благодаря исследованиям Генри Дейла и Отто Леви. В двадцатых годах и начале тридцатых они изучали сигналы, посылаемые вегетативной нервной системой в сердце и некоторые железы. Работая независимо друг от друга, они открыли, что, когда потенциал действия, распространяющийся по нейрону вегетативной нервной системы, достигает окончаний его аксона, он вызывает выделение определенного химического вещества в синаптическую щель. Это вещество, которое мы теперь называем нейромедиатором, преодолевает синаптическую щель и достигает клетки-мишени, где его узнают и связывают особые рецепторы, расположенные на наружной поверхности мембраны этой клетки.
Леви, родившийся в Германии и работавший в Австрии физиолог, исследовал те два нерва, то есть пучка аксонов, которые управляют сердцебиением: блуждающий нерв, снижающий частоту сердцебиения, и ускоряющий нерв сердца, повышающий эту частоту. В ходе ключевого эксперимента на лягушках он стимулировал блуждающий нерв, вызывая в нем потенциалы действия, приводившие к снижению частоты сердцебиения. При этом во время и сразу после стимуляции блуждающего нерва он быстро собирал жидкость, окружающую сердце лягушки, и вводил эту жидкость в сердце другой лягушки. Как ни удивительно, у второй лягушки тоже замедлялось сердцебиение! Это не было вызвано никакими потенциалами действия, вместо них вещество, выделяемое блуждающим нервом первой лягушки, передавало замедляющий сердце сигнал.
Впоследствии Леви и британский фармаколог Дейл показали, что вещество, выделяемое блуждающим нервом, представляет собой несложное химическое соединение ацетилхолин. Ацетилхолин играет роль нейромедиатора и замедляет сердцебиение, связываясь с особым рецептором. Вещество, выделяемое ускоряющим нервом сердца, родственно адреналину, еще одному несложному соединению. За открытие первых свидетельств того, что сигналы, передаваемые от одного нейрона вегетативной нервной системы к другому через синапсы, переносятся специфическими химическими медиаторами, Леви и Дейл в 1936 году разделили Нобелевскую премию по физиологии и медицине.
Через два года после получения Нобелевской премии Леви на собственном опыте убедился в том, с каким презрением австрийские нацисты относились к науке. Через день после того, как Гитлер въехал в Австрию под приветственные крики миллионов моих сограждан, Леви, ученый, двадцать девять лет работавший профессором фармакологии в Грацском университете, оказался за решеткой, потому что был евреем. Через два месяца его отпустили при условии, что он переведет свою долю Нобелевской премии, по‑прежнему хранившуюся в шведском банке, в контролируемый нацистами австрийский банк и немедленно покинет страну. Так он и сделал и вскоре стал профессором в медицинской школе Нью-Йоркского университета, где несколько лет спустя мне довелось присутствовать на его лекции о сделанном им открытии химической передачи сигналов в сердце.
Новаторские работы Леви и Дейла по исследованию вегетативной нервной системы убедили многих нейробиологов, имевших уклон в фармакологию, что клетки центральной нервной системы, по‑видимому, тоже используют нейромедиаторы для передачи сигналов через синаптическую щель. Однако некоторые электрофизиологи, в том числе Джон Экклс и Гарри Грундфест, продолжали в этом сомневаться. Они признавали значение химической передачи для вегетативной нервной системы, но были убеждены, что в головном и спинном мозге сигналы передаются просто слишком быстро, чтобы иметь химическую природу. Поэтому они по‑прежнему придерживались теории электрической передачи применительно к центральной нервной системе. Экклс выдвинул гипотезу, что ток, производимый потенциалом действия в пресинаптическом нейроне, пересекает синаптическую щель и входит в постсинаптическую клетку, где усиливается, запуская в этой клетке потенциал действия.
Когда методы регистрации электрических сигналов усовершенствовались, в синапсах между мотонейронами и скелетными мышцами был обнаружен слабый электрический сигнал – доказательство того, что потенциал действия пресинаптического нейрона не сразу вызывает в мышечной клетке потенциал действия, а вначале порождает в ней намного более слабый сигнал особого рода, названный синаптическим потенциалом. Оказалось, что синаптические потенциалы отличаются от потенциалов действия по двум параметрам: они намного медленнее, а их амплитуда может варьировать. Поэтому на репродукторе вроде того, который использовал Эдриан, синаптический потенциал звучал бы как тихое, медленное продолжительное шипение, а не как резкое “бах-бах-бах” потенциала действия, причем громкость этого шипения могла бы варьировать. Открытие синаптического потенциала доказывало, что нервные клетки используют два типа электрических сигналов: потенциал действия для передачи сигналов на большие расстояния и синаптический потенциал для локальной передачи, чтобы переправить информацию через синапс.
Экклс сразу осознал, что именно синаптические потенциалы ответственны за открытую Шеррингтоном “интегративную деятельность нервной системы”. В любой момент времени на всякую клетку любого проводящего пути сыплется множество синаптических сигналов, как возбуждающих, так и тормозящих, но у клетки есть только две альтернативы: запускать или не запускать потенциал действия. Более того, базовая задача нервной клетки состоит именно в интеграции сигналов: клетка суммирует получаемые ею от пресинаптических клеток возбуждающие и тормозящие синаптические потенциалы и запускает потенциал действия лишь тогда, когда сумма возбуждающих сигналов превышает сумму тормозящих на величину, чем некоторое пороговое значение. Экклс понял, что именно способность нейронов суммировать все возбуждающие и тормозящие синаптические потенциалы, поступающие по ведущим к данному нейрону аксонам других нейронов, и обеспечивает описанное Шеррингтоном постоянство поведенческих реакций.