На фундаментальном уровне Вселенная не столько сложна, сколько невероятно случайна. Радиоактивный распад, движение атомов, результаты физических экспериментов – все это определяется прихотями непредсказуемости. По сути своей Вселенная – страшный сон Эйнштейна. Может статься, случайность – это и ваш страшный сон. Люди плохо приспособлены к тому, чтобы мыслить статистически. Если шансы очевидны или речь идет о жизни и смерти, мозг подсказывает решение. «Не дергай за хвост этого тираннозавра[42], – говорит, к примеру, мозг. – Многие пробовали, и ничем хорошим это не кончилось, так что все шансы за то, что и для тебя это ничем хорошим не кончится».
С другой стороны, поезжайте в Лас-Вегас и спросите там человека, который только что проиграл 10 ставок подряд, каковы шансы, что в следующий раз он выиграет. Либо он заявит, что уж тут-то ему непременно повезет и он сорвет банк, либо – что игра сегодня не заладилась. Неважно, оптимист он или пессимист, – в обоих случаях он ошибается. Шансы выиграть в следующий раз точно такие же, как и во все предыдущие: 50 на 50.
Но раз уж вы не проводите большую часть досуга в казино (по крайней мере, мы надеемся), возможно, вам будет полезно, если мы объясним вам некоторые нюансы случайности под более знакомым углом зрения. Мы рады представить вам наше семейство по фамилии Бломберг в разгар их встречи. Особенно нас раздражают родственники, которые не просто предъявляют обычные стариковские требования к младшему поколению, но еще и по непонятной причине отказываются верить в могущество случайности, хотя могли бы взяться за ум и согласиться, что мы правы.
Вот, скажем, наш кузен Герман. Он настоящий самородок – умеет делать приемники, которые ловят передачи с кораблей пришельцев. Кроме того, он уверен, что правительство, ученые, а особенно ученые на службе правительства, подтасовывают научные данные, и все это – часть масштабного заговора[43]. Герман одержим идеей глобального потепления, и ему было бы куда легче, не считай он, будто его целиком и полностью сфальсифицировали. Расставим все по местам: среди научного сообщества бытует практически единодушное мнение, что глобальное потепление действительно имеет место и является результатом действий человека. С точки зрения связей с общественностью, ситуацию осложняет то обстоятельство, что, как опять же единодушно считают ученые[44], за следующие 10 лет средняя температура на планете повысится примерно на одну десятую градуса по Цельсию. На первый взгляд немного, но с течением времени потепление может оказать сокрушительное воздействие на природу.
Герман живет в Филадельфии, где, согласно «Википедии», средняя температура в декабре составляет около 2,2° C. Но вот, представьте себе, однажды у нас выдастся необычайно теплое Рождество – все праздники будет стоять температура около 10° C. Тогда Герман перестанет писать гневные письма в правительство и милостиво смирится с фактом: с его точки зрения, глобальное потепление станет реальностью. Но в данном случае нам бы не хотелось заполучить Германа в союзники на основании такого однократного наблюдения. И вот почему.
Иногда температура бывает выше среднего, иногда ниже. Если разброс достаточно велик, мы не замечаем небольших изменений от года до года. На самом деле нет ничего необычного в том, что температура стоит на 10° C выше среднего, как нет ничего необычного и в том, что она падает на 10° C ниже среднего. Что будет через год, когда в Филадельфии выдастся холодная зима и средняя температура в декабре будет –7° C? Тогда кузен Герман будет утверждать, что шум вокруг глобального потепления подняли зря, и снова примется мастерить свой шлем из фольги. Он не видит, в чем сложность, поскольку сосредоточен на отдельных днях, а не на тенденции. Ну и что? У вас на совести наверняка есть грешки и похуже.
Даже освободившись от тревог за кошмарное будущее планеты, Герман все равно найдет о чем тревожиться. Почему непонятные мелкие частички в его стакане с водой все кружатся и кружатся? Какова вероятность, что через двести лет в Землю врежется гигантский астероид? Долго ли проживет его ручной нейтрон? Возможно, раньше все это вас не заботило, но каждое из этих явлений – результат последовательности случайных событий в действии.
I. Если физический мир настолько непредсказуем, почему мы замечаем это далеко не всегда?
На отдаленной ветке генеалогического древа (и на пыльной дальней полке генофонда) находится дядя Луи. Он человек по-своему обаятельный – сыплет солеными шуточками и постоянно просит маленьких детишек дернуть его за палец. Племянники и племянницы дяди Луи заплатили за колледж монетками в четверть доллара, которые он натаскал из ушей. Однако дядя Луи – патологический азартный игрок. Дядя Луи готов заключать пари по поводу чего угодно – чем кончится фильм, кто победит в гонке раков-отшельников, ну и так далее. Поэтому дядя Луи и Дейв прячутся от тети Мейвис в туалете и играют там в старую добрую игру – бросают монетку. Ну что в этом плохого, скажите на милость, если только монетка не крапленая?
Чтобы понять суть игры, надо объяснить, что значит «некрапленая монетка». Если монетку кидали миллион раз, то решка будет выпадать примерно в половине раз. Чем дольше бросают монетку, тем ближе к 50 % будет частота решек. Кроме того, монетка «некрапленая», если каждый следующий бросок не зависит от предыдущего. Неважно, что выпало только что – орел или решка: в следующий раз с той же вероятностью в 50 % выпадет орел или решка.
Но вот в чем загвоздка. Хотя мы ожидаем, что после миллиона бросков дядя Луи и Дейв будут идти примерно ноздря в ноздрю, мы имеем в виду именно дроби.
Технический уголок дяди Дейва. Немного статистики
В начале книги мы пообещали вам следить, чтобы количество формул не превышало абсолютного минимума. Вот уже некоторое время мы придерживаемся правила «без формул», но при чтении такой математикоемкой главы, как эта, наверняка найдутся мазохисты, которые потребуют еще. «Откуда взялись эти числа?» – слышится ваш вопль. Поэтому вот вам еще капелька математики.
Когда дядя Луи бросает некрапленую монетку, существует, как мы упоминали, достаточно высокая вероятность, что решка будет выпадать примерно в половине раз. Насколько точно? Есть полезное правило: разброс результатов будет примерно равен квадратному корню из удвоенного ожидаемого количества решек (то есть «побед»). Для простоты мы немного сжульничали, но основную картину это не меняет. Так что если вы бросаете монетку миллион раз, то, скорее всего, получите решку полмиллиона раз плюс-минус 1000 раз.
Если Луи с Дейвом бросают монетку миллион раз, Луи может и выиграть много денег, и проиграть много денег, зато утешением ему станет мысль о том, что все равно он выигрывал почти 50 % раз. Если он выиграет 501 тысячу раз (на тысячу выигрышей больше половины), то все равно окажется, что он выигрывал всего 50,1 % раз. Это и в самом деле напрасная трата времени и не слишком надежный способ сорвать приличный куш (или проиграться в дым).
В полновесных долларах картина будет иной. После миллиона бросков весьма вероятно, что Дейв или дядя Луи выиграют примерно на тысячу раз больше половины и сорвут приличный куш (или наоборот). Если вам интересно, откуда взялось это число – 1000, – рекомендуем посетить «Технический уголок дяди Дейва». Если неинтересно, ничего страшного. Это не входит в обязательную литературу по предмету.
Нас должно радовать, что в наших силах предсказать вероятность едва ли не любого исхода. Например, в игре в миллион подбрасываний Луи (или Дейв) вправе ожидать различных результатов игры со следующими вероятностями: