60. Обозначим участников переговоров А, Б и В. Представим ход рассуждений участника А: «Участник Б думает, что его лысина прикрыта, и смеется над В. Но если бы он видел, что у меня прическа в порядке, то был бы удивлен смеху В, так как в этом случае у В не было бы повода улыбаться. Однако Б не удивлен, значит, он думает, что В смеется надо мной. Следовательно, моя лысина не прикрыта».
61. Из слов хозяина черной шевелюры следует, что у Белова волосы могли быть только черными или рыжими, у Чернова – белыми или рыжими, у Рыжова – черными или белыми.
Это означает, что тронуть рукой свою черную шевелюру мог только банкир Белов или юрист Рыжов.
Поскольку на слова черноволосого среагировал банкир, то он не может быть тем, кто говорил. Следовательно, черноволосый – юрист Рыжов.
Значит, банкир Белов не черноволосый. Не может быть он и блондином. Следовательно, Белов – рыжий.
Белые волосы остаются для предпринимателя Чернова.
62. Бизнесмен Жук солгал. Дело в том, что утверждение «неверно, что все бизнесмены лгуны» равносильно тому, что «не все бизнесмены лгут». А раз так, то Жук мог и солгать.
63. Принимая общее количество учеников Пифагора за х, можно записать условие задачи так:
откуда х =28.
64. Принимая долю мужчин за х, можно записать:
65. Принимая число присутствующих на собрании за х, можно записать:
Откуда х = 130 человек. Всего в коллективе 130 + 0,2 х 130 = 156 человек.
66. Во-первых, для того чтобы не пропустить момент, когда собеседник начнет поглядывать на свои часы, – это первый сигнал к тому, что пора закругляться. А во-вторых, для того чтобы правильно отреагировать, когда партнер по переговорам снимет часы и станет трясти ими у себя над ухом, проверяя, не остановились ли они.
67. Обозначим количество участников деловой встречи через х. Тогда количество договоров, заключенных каждым из участников, равно х - 1 (исключается договор с самим собой). А всего на встрече будет заключено х(х - 1) договоров. Но эти договоры должны быть парными (на двух участников – один договор). Поэтому фактически договоров будет в два раза меньше:
Следовательно
откуда х = 15.
68. При гиперинфляции найденный кошелек кладут в карман, а деньги из него выбрасывают.
69. Необходимо заполнить доверху 9-литровое ведро и дважды с помощью 4-литрового ведра отлить из него ровно 8 литров воды. Оставшийся 1 литр воды вылить в пустое 4-литровое ведро. Снова наполнить 9-литровое ведро и отлить из него 3 литра воды в 4-литровое (там уже есть 1 литр), заполнив его доверху. В 9-литровом ведре при этом останется ровно 6 литров воды.
70. Необходимо вначале отловить 100 карпов, пометить их и выпустить обратно. Через некоторое время, когда рыбы успокоятся, снова отловить 100 карпов и сосчитать, сколько среди них меченых. К примеру, меченых рыб оказалось 4. Это означает, что в водоеме 4 % меченых рыб. Но, с другой стороны, мы знаем, что меченых рыб 100. Следовательно, 100 рыб составляют 4 % от общего количества их в пруду.
Значит, 100 % - это
71. 1) Вероятность того, что первый попавшийся вам по приезде в Москву человек – ваш единственный знакомый в этом городе, равна:
2) Вероятность отгадать в лотерее 6 номеров из 49 по формулам теории вероятностей равна:
где С649 – сочетание из 49 элементов по 6. Следовательно, вероятность отгадки равна
т. е. примерно в полтора раза меньше.
72. Возможно. На этот счет существует специальная теорема. Практическое решение данной задачи требует, однако, сложных расчетов.
73. Водителям поменяться машинами.
74. В момент выхода железнодорожного состава из Москвы в пути находится 8 встречных составов, в том числе один, входящий в это время в Москву, и один, выходящий из Владивостока. Все 8 составов будут встречными. Но этого мало. За те 7 дней, что москвичи будут в пути, из Владивостока успеет выйти еще 7 составов (в том числе один – в момент прихода московского поезда во Владивосток). Итого 8 + 7 = 15 составов, т. е. письма могут быть получены 15 раз.
75. До третьего этажа 2 пролета лестниц, до шестого – 5. Следовательно, т. е. в два с половиной раза.
76. Вероятность выигрыша рассчитывается по формулам теории вероятностей:
Необходимые формулы можно найти в любом математическом справочнике.
п– общее количество билетов,
k – количество билетов, содержащих выигрыш,
т – количество купленных билетов,
Clk – количество билетов, выигрыш по которым нас интересует.
Подставляя соответствующие значения, получим: