низкоомное резистивное заземление нейтрали. Нейтраль сети соединяется с землей через небольшое сопротивление. При однофазном замыкании на землю возникает значительный ток, достаточный для работы релейной защиты на отключение;
высокоомное резистивное заземление нейтрали. Нейтраль сети соединяется с землей через большое сопротивление (соизмеримое с емкостным сопротивлением фаз относительно земли). Ток, возникающий при однофазном замыкании на землю, достаточен для определения поврежденного присоединения и работы релейной защиты на сигнал;
комбинированное заземление нейтрали. Этот вид заземления осуществляется путем присоединения высокоомного резистора параллельно дугогасительному реактору (ДГР). Он позволяет снижать уровень перенапряжений при неточной настройке реактора, а также способствует работе на сигнал простых релейных защит.
Способы реализации резистивного заземления связаны с особенностями устройства электрических сетей. В сетях, где нет выводов нейтралей обмоток (это, как правило, сети 6-10 кВ), заземляющий резистор подключается к искусственной нулевой точке, образованной первичными обмотками специального трансформатора заземления нейтрали (ТЗН) со схемой соединения обмоток «звезда с нулевым выводом/треугольник» (рис. 1.6, а).
Если имеется трехобмоточный силовой трансформатор с выведенной на крышку трансформатора нейтралью обмотки (обычно в сетях 20 и 35 кВ), то заземляющий резистор присоединяется к этому выводу (рис. 1.6, б).
Комбинированное заземление осуществляется путем подключения заземляющего резистора параллельно ДГР к имеющимся электрическим цепям (рис. 1.7, а и б).
Определить токи при однофазных замыканиях на землю в этих электрических сетях можно следующим образом.
В сети с непосредственным присоединением резистора к нейтрали трансформатора на основе схемы замещения (рис. 1.8) комплексные токи в месте повреждения и в заземляющем резисторе соответственно определяются так:
Здесь g и gN — соответственно проводимости места повреждения и заземляющего резистора; g = 1/Rп, где Rп — сопротивление в месте повреждения; gN = 1/RN, где RN — сопротивление заземления нейтрали; ÚN и ÚЗ — векторы напряжений нейтрали и поврежденной фазы относительно земли соответственно; ĖС — вектор фазной э.д.с. поврежденной фазы С; С — емкость фазы относительно земли.
При низкоомном заземлении нейтрали ωС << gN. Поэтому можно принять ωС = 0. Тогда векторы токов в месте повреждения и в заземляющем резисторе равны и определяются так:
Для действующих значений этих токов можно записать:
При стационарных металлических замыканиях gN << g и g + gN ≈ g. В этих условиях действующие значения токов в месте повреждения и в заземляющем резисторе можно определить так:
Токи при однофазных замыканиях на землю в сетях с резистивным заземлением искусственной нулевой точки можно определить по аналогичной методике.
В реальных условиях, как правило, z0Т << RN (где z0Т — сопротивление нулевой последовательности заземляющего трансформатора) и z0Т можно принять равным нулю. Тогда для тока в месте установки защиты при стационарном металлическом однофазном замыкании на землю можно записать:
Реже возможны и другие, более сложные виды замыканий, представляющие собой различные сочетания рассмотренных выше: трехфазное КЗ на землю (рис. 1.9, а), двухфазное КЗ на землю (рис. 1.9, б), двойное КЗ на землю (рис. 1.9, в).
Перечисленные замыкания могут иметь место как в сетях с глухозаземленной нейтралью, так и в сетях с изолированной (компенсированной) нейтралью.
2. Токовые защиты
Подавляющее большинство повреждений в электрических системах сопровождаются повышением тока, поэтому именно ток целесообразно использовать в качестве входного сигнала для средств релейной защиты.
Защиты, которые оценивают состояние защищаемого объекта по току, называют токовыми. Токовые защиты начинают действовать при выходе значения контролируемого тока за установленные границы. Эти границы, задаваемые тем или иным способом на чувствительных элементах защиты, принято называть уставками.
Действующее значение тока в месте установки защиты, при котором защита начинает действовать, называют током срабатывания защиты. Действующее значение тока в месте установки защиты, при котором защита возвращается в исходное состояние, называют током возврата защиты. Отношение тока возврата защиты к току ее срабатывания называется коэффициентом возврата.
Как правило, чувствительные к току элементы — токовые реле — включаются в защищаемую сеть за трансформаторами тока (ТТ). В этом случае ток срабатывания реле (уставка) ICP и ток срабатывания защиты IC3 связаны следующим соотношением:
где kTT — коэффициент трансформации ТТ;
кCX — коэффициент схемы, показывающий, во сколько раз ток в обмотке реле больше, чем ток во вторичной обмотке ТТ.
Значение коэффициента схемы определяется схемой соединения вторичных обмоток ТТ и катушек реле.
Токовые защиты должны устанавливаться на защищаемом участке электрической сети со стороны источника питания. Если электрическая сеть включает в себя несколько источников, то защиты на контролируемом объекте следует устанавливать со стороны каждого источника питания, а сами защиты в этом случае должны обладать направленностью действия.
Наиболее часто защиты реагируют на повышение тока. Поэтому они являются защитами максимального типа и называются максимальными токовыми защитами.
Существует два вида токовых защит максимального типа, различающиеся способами обеспечения селективной работы: токовые отсечки и максимальные токовые защиты с выдержкой времени срабатывания.
2.1. Токовые отсечки
Токовые отсечки — это быстродействующие токовые защиты максимального типа, селективность действия которых обеспечивается за счет ограничения зоны действия (то есть выбором только уставки по току).
В сетях с односторонним питанием токовые отсечки устанавливаются в начале защищаемого участка со стороны источника питания.
Поскольку токи КЗ зависят от удаленности места повреждения от источника питания, то можно подобрать такое значение тока срабатывания отсечки, при котором в зону ее действия будет входить только контролируемый объект. Так, ток срабатывания токовой отсечки ТО1 (рис. 2.1) должен быть больше максимально возможного тока КЗ на смежном присоединении, то есть на линии W2. Поскольку ток КЗ при повреждении в начале линии W2 практически равен току КЗ при повреждении в конце линии W1, для выбора уставки обычно рассчитывают ток КЗ при повреждении на подстанции ПС2 — при КЗ в граничной между линиями точке К1.
Условие выбора тока срабатывания отсечки в этом случае может быть записано так: