Объяснение же ему, ссылаясь опять-таки на Эйнштейна, они придумали такое. Всем известно, что, когда в атмосфере возникает смерч — этакий воздушный волчок, — он вовлекает во вращение и окружающие его частицы воздуха и пыли, даже мелкие и легкие предметы. А что происходит, когда вращается такое огромное и массивное небесное тело, как наша Земля? Она не только вовлекает во вращение всю атмосферу, но и околоземное пространство-время, в какой-то мере искажая, искривляя его. Вот эти-то искажения и влияют на движение спутников. В точности так, как это предсказывал Эйнштейн.
На том можно бы поставить точку. Однако далеко не все пока согласны с выводами итальянского и американского исследователей. Скептики справедливо указывают, что погрешность сделанных ими измерений достигает 10 %, а при такой точности немудрено и выдать желаемое за действительное. Поэтому полученные данные должны быть перепроверены. Для этого в апреле 2004 года в космос был запущен «Гравитационный зонд Б». Этот аппарат имеет на борту четыре прецизионных гироскопа (охлажденные почти до абсолютного нуля идеальные кварцевые сферы). Ось вращения таких гироскопов должна постоянно находиться в одном и том же направлении. Однако, если общая теория относительности справедлива, искривление пространства-времени массой Земли приведет к отклонению осей гироскопов примерно на 42 угловые миллисекунды в год.
Первые данные с «Гравитационного зонда Б» ожидаются в начале 2006 года. Пока исследователи выжидают, когда встревоженные вибрациями запуска гироскопы окончательно успокоятся. А вообще, как рассуждают специалисты, особенно зримо данный эффект должен проявить себя вблизи вращающейся черной дыры. Так что в будущем, кто знает, дело может дойти до запуска исследовательского зонда и в сторону этого загадочного объекта.
Вот какую сумятицу внес Альберт Эйнштейн в умы ученых. И сто лет спустя они все еще не могут успокоиться…
С.НИКОЛАЕВ
ПОДРОБНОСТИ ДЛЯ ЛЮБОПЫТНЫХ
Измерители жары и холода
Как измерить температуру? Вопрос этот не так прост, как может показаться на первый взгляд. Даже при болезни в мире все реже применяют айболитовские стеклянные термометры с серебристым столбиком ртути. Что же касается других случаев…
Температура — это движение?
Многие, впрочем, даже не задумываются о том, что они подразумевают, употребляя слово «температура». Жарко на улице, значит, у воздуха температура высокая, холодно — значит низкая.
Для физиков температура тоже не представляет загадки. С их точки зрения температура указывает на скорость теплового движения молекул. Как говорит физик из Йельского университета, доктор Роберт Фолькоп, «это некоторая мера беспорядочного движения молекул и атомов с различными степенями свободы».
Взять, например, молекулы воздуха или воды, которые беспорядочно ударяются друг о друга. При этом они передают друг другу энергию, причем распределение скоростей движения описывается нормальной кривой — колоколообразной линией, пик которой приходится как раз на среднюю температуру молекул. Чем выше температура, тем стремительнее они мечутся. С понижением же температуры движение все медленней, а при абсолютном нуле замирает совсем.
Шкалы градусников
Впрочем, прежде чем мы поговорим подробнее об измерениях температуры в некоторых экстремальных случаях, давайте сначала разберемся в нынешних шкалах температур. Откуда они взялись и почему и по сей день в обиходе сразу три разных шкалы?
Первую шкалу придумал немецкий физик Габриэль Фаренгейт. Он же, кстати, в 1709 году изобрел распространенный поныне спиртовый термометр, а пять лет спустя и всем известный медицинский ртутный градусник. Но если градусниками Фаренгейта многие пользуются и по сей день, то с его шкалой получилась некая неувязка. Точку замерзания воды он почему-то принял за 32 градуса, а точку ее кипения — за 212. Шведский астроном Андерс Цельсий в 1742 году предложил иную, более логичную, шкалу. Точка замерзания воды, по его мнению, равнялась 100 градусам, а точка кипения — нулю. С ним согласились, правда, с существенной поправкой. Коллеги доктора Цельсия перевернули его шкалу, решив, что логичнее считать точку замерзания воды равной 0 °C, а точку кипения — 100 °C. Эта шкала наиболее распространена и по сей день. А вот шкалу Фаренгейта используют лишь в США. И то последнее время там стали привыкать к шкале Цельсия.
И наконец, шотландский химик У. Томсон, известный больше как лорд Кельвин, предложил в 1816 году шкалу абсолютных температур, приняв за ноль ту температуру, при которой прекращается тепловое движение атомов. Это происходит примерно при -273 °C, так что, согласитесь, пересчитывать шкалу Кельвина в шкалу Цельсия не очень-то удобно. Поэтому кельвинами пользуются в основном лишь исследователи сверхнизких температур. Так и сосуществуют по сей день сразу три шкалы температур.
Причем поскольку температура кипения воды меняется при изменении давления, то ныне за основу шкалы Кельвина взята так называемая тройная точка для воды, при которой при неких физических условиях могут мирно сосуществовать лед, вода и пар. Она равна 0,01 °C или 276,16 К.
Последняя поправка к температурному стандарту была принята в 1990 году, когда было уточнено, что вода при нормальном атмосферном давлении закипает на 0,026 градуса ниже стоградусной отметки. Тогда же для калибровки термометров было выбрано еще 17 точно выверенных опорных точек: тройная точка для водорода, точка плавления галлия, точка замерзания меди и т. д.
Такие разные термометры
Разобравшись со шкалами, мы можем поговорить и об измерителях температуры.
Известные термометры, в том числе и знакомый всем ртутный медицинский градусник, основаны на том, что столкновения молекул заставляют газы и жидкости при нагревании расширяться. Вот уже почти триста лет они верой и правдой служат людям. Позднее появились новые термометры. Часть их, например, основана на изменении электрического сопротивления проводников в зависимости от температуры.
Еще один способ измерения температур основан на использовании жидкокристаллических пленок. Существуют в природе вещества, изменяющие свой цвет при повышении или понижении температуры. Стоит приложить пленку, содержащую в своем составе подобные соединения, к телу или иному нагретому предмету, и по ее цвету сразу видно, какова температура. Таким образом удается заметить изменения температуры с точностью до 0,01 °C.
Используются ныне и пирометры — приборы, оценивающие инфракрасное излучение нагреваемых тел. Этот способ удобен тем, что позволяет измерять температуру на расстоянии.
Современные пирометры, например, способны определить не только температуру внутри раскаленной доменной печи, но и на поверхности или даже в недрах далеких звезд. Удалось, наконец, в последние годы разработать приборы для измерения температуры ультраохлажденных атомов вблизи температуры абсолютного нуля, а также температуры в триллионы градусов, получаемые при термоядерных реакциях.
Один из термометров нового типа состоит из двух кусочков металла, укрепленных на кремниевой пластинке и разделенных тонкой полоской изолятора. По странным законам квантовой механики электроны способны время от времени тоннелировать, то есть проникать сквозь слой изолятора с одной полоски на другую. Причем при повышении температуры количество таких переходов увеличивается.