Литмир - Электронная Библиотека
Содержание  
A
A

Загрязнение атмосферы городов имеет типичные источники. Ими обычно являются выхлопные газы, а также выбросы предприятий и результат сжигания отходов. Контроль и идентификация всех этих загрязнений необходимо для понимания их происхождения и для принятия мер по их уменьшению.

В Европе были проведены мероприятия по измерению городских загрязнений. В Лионе (Франция) лидар типа DIAL был установлен вблизи кафедрального собора для измерений NO, выделяемого автомобильным движением в центре города. Наибольшая концентрация была обнаружена в старой части города, где движение медленней, а вентиляция улиц затруднена. Эти результаты указали, что в этой части города следует установить пешеходную зону. В Штутгарте (Германия), который окружен несколькими холмами, при некоторых условиях наблюдается скапливание воздуха, загрязненного автомобильным движением (главным образом в результате NO), на высоте 450 м. В Берлине выбросы SO2 оказались сильнее в восточной части города из-за низкого качества угля, который используется для отопления, а в районе Александрплатц концентрация оказалась ниже, поскольку ее сдувает юго-восточный ветер. Концентрация SO2 является существенной причиной кислотных дождей. Она появляется при смоге, в результате обогрева домов, выбросами автомобилей и тепловых электростанций. Это было измерено в Лейпциге. Было показано, что главная проблема — автомобили и обогрев домов.

Такие измерения показали, что топографические и метеорологические условия часто играют более важную роль, чем интенсивность выделения загрязнений: в узких улицах с медленным движением загрязнение сильнее, чем в широких, проветриваемых магистралях даже с интенсивным движением.

Летом 1994 г. в Афинах Европейским Сообществом была проведена кампания для выявления фотохимических и метеорологических процессов, которые ответственны за летние туманы в этой области. Была установлена существенная роль химических реакций между NO, образующимся при автомобильном движении, и NO2 и озоном.

Важным применением лидаров является измерение концентрации озона (O3) в стратосфере над Антарктикой и Арктикой. Знание концентрации и распределения озона в атмосфере имеет важное значение как для проблемы загрязнений, так и для химических процессов в тропосфере. Концентрация озона влияет на климат из-за экранирования ультрафиолетового солнечного излучения и термических и химических равновесий в стратосфере. Дело в том, что озон, присутствующий в верхних слоях атмосферы, поглощает солнечное ультрафиолетовое излучение, которое имеет вредное биологическое действие, тем самым слой озона защищает поверхность Земли от чрезмерного воздействия вредного ультрафиолета. Хорошо известно, что в течение последних нескольких лет наблюдалось постоянное уменьшение толщины озонового слоя над полюсами (т.н. «озоновая дыра»). Эта дыра получается в результате химических реакций с некоторыми летучими продуктами, связанными с индустрией (например, газ фреон, используемый в холодильниках, или в аэрозольных баллончиках). Вертикальное распределение озона, которое определяет развитие «дыры» в пространстве и во времени, было измерено с помощью лидаров.

Лидар может быть использован для измерений скорости ветра, что необходимо для метеорологии и разработок моделей климата, а также для измерения скорости аэрозолей, дыма и пр. В этом случае используется эффект Доплера, заключающийся в малых изменениях частоты света, испускаемого движущимися телами, или отраженного от них. Измеряя эти изменения частоты отраженного (рассеянного в обратном направлении) света тем или иным способом, можно получить информацию о скорости. Соответствующий инструмент называется доплеровским лидаром.

С помощью лидара можно изучать конвекционные явления в облаках. Облака отражают и переизлучают инфракрасное излучение, несущее тепло. Они важны для нагрева и охлаждения атмосферы, но никто не знает, как описать их влияние. Можно также изучать водяные пары, которые играют роль в образовании ураганов. Путем измерения изменений в спектрах молекул кислорода получается информация об атмосферном давлении и температуре.

Аналогичные методики можно использовать и для морских измерений, например для измерений количеств хлорофилла и фитопланктона. Важность таких измерений очевидна, так как фитопланктон поставляет около двух третей поступающего в атмосферу кислорода. Загрязнения воды разлившейся с кораблей нефтью и другие загрязнения, а также температуру воды и ее соленость также можно измерять.

Можно также изучать явления сгорания. Целью исследовательских программ в этой области является разработка диагностических методик контроля процессов сгорания в промышленных предприятиях. Можно измерять температуру, концентрацию и скорость различных газов, а также размеры частиц дыма.

Для всех этих измерений используются лазеры самых разных типов, в зависимости от определенного применения: рубиновые, неодимовые, на красителях, диодные и др. Их стоимость может изменяться в широких пределах, они могут быть как стационарными, так и портативными, для установки на различные транспортные средства.

Адаптивная оптика

Мы теперь опишем несколько применений, которые, на первый взгляд, могут показаться из научной фантастики. Одно из них — т.н. адаптивная оптика.

Адаптивная оптика улучшает качество изображения в больших телескопах путем компенсации искажений, вызываемых атмосферой, т.е. искажений световых пучков при их прохождении через атмосферу. Такие искажения можно легко видеть, если, например, в жаркий день наблюдать пейзаж при заходящем солнце. Изображение кажется дрожащим (марево). Адаптивная оптика компенсирует эти искажения, и поэтому ее иногда называют «методикой, которая останавливает мерцание звезд». Это определение может вызвать возмущенную реакцию: «Но это ужасно, и должно быть запрещено!»

Давайте посмотрим, что получается на самом деле. Звезды расположены настолько далеко от Земли, что их свет приходит к нам в виде плоских волн (плоский волновой фронт). В теории телескоп снабжен совершенной оптикой, которая концентрирует свет в маленький, яркий кружок, размеры которого ограничены лишь явлениями дифракции, т.е. действием диаметра главного объектива или зеркала на падающую на него волну. Две близкие звезды можно видеть отчетливо раздельными, если угол, под которым они видны в телескоп, больше минимального значения угла, при котором оба ярких пятна, каждый из которых производится звездой, сливаются в одно пятно. Этот минимальный угол называется угловым разрешением. Лорд Рэлей дал критерий, определяющий эту величину. Угловое разрешение телескопа порядка угловых секунд определяется постоянством времени волнового фронта для волны, преобразуемой входной апертурой телескопа. Так космический телескоп «Хаббл» на орбите вокруг Земли имеет диаметр телескопа 2,4 м, и угловое разрешение, близкое к 0,05 угловых секунд. На Земле такой же 2,4 м телескоп имеет угловое разрешение в 20 раз хуже из-за искажений в атмосфере.

Телескопы строятся с большими апертурами, т.е. с зеркалами большого диаметра (до нескольких метров), с поверхностью, обработанной с высокой точностью (до долей длины волны). Гигантские собиратели света дают возможность обнаруживать и изучать свойства очень слабых (удаленных) объектов, именно из-за того, что их огромные входные апертуры могли собрать слабый свет, испускаемый объектом. Более того, телескопы с высоким разрешением позволяют разглядеть больше деталей наблюдаемых объектов. К сожалению, малые флуктуации температуры атмосферы вызывают флуктуации коэффициента преломления воздуха. Это, в свою очередь, приводит к тому, что разные части первоначального волнового фронта проходят несколько различные пути, и изображение в телескопе, соответственно, размывается. О таких аберрациях мы уже говорили. Изображение диска звезды, получаемого с помощью телескопа с диаметром 4 м, установленного на земле типично в 40 раз больше того оптимального размера, который должен был бы получаться согласно теории дифракции. Технически это обозначается, как когерентный диаметр атмосферы, и его значение обычно составляет 10—20 см. Тот факт, что фотоны от далекого объекта разбрасываются по пятну в 40 раз большего, чем дифракционный предел, означает, что интенсивность изображения в 402 раз меньше. Поэтому даже хотя большие телескопы с апертурой, большей, чем когерентный диаметр атмосферы, могут собрать больше фотонов, это ничего не дает в смысле увеличения разрешения. Критики могут интерпретировать этот факт как то, что величайшие телескопы мира имеют чрезмерную стоимость.

88
{"b":"201420","o":1}