Рис. 41. Пирамидальная структура молекулы аммиака (а). Потенциальная энергия атома азота как функция его расстояния от плоскости атомов водорода (б)
Гордон, Цайгер и Таунс, после некоторой модификации их идеи, решили наблюдать переход между нижней колебательной парой во вращательном состоянии с тремя числами углового момента около каждой из осей, который обозначается 3-3 состояние. Этому переходу соответствует частота 23 830 МГц.
Идея Таунса заключалась в том, чтобы получить некоторым способом пучок молекул, например нагревом, а затем отделить тех, которые в возбужденном состоянии, от тех, которые на нижнем состоянии. Это можно было сделать, учитывая интересное свойство молекулы: при приложении электрического поля молекула деформируется и возникает малый дипольный момент для обоих чисел вращательной пары, но противоположного знака. Если электрическое поле неоднородно, получается тот же эффект, который наблюдался Штерном и Герлахом, и на молекулу будет действовать сила с противоположным направлением для каждого числа пары. Проект предусматривал использовать сильное электростатическое неоднородное поле, действующее на пучок молекул аммиака, и сфокусировать возбужденные молекулы этого пучка в малое отверстие полости резонатора, настроенного точно на 23 830 МГц.
В 1950-е гг. Вольфганг Поль (1913-1993) вместе с Хельмутом Фридбургом и Гансом Беневитцем спроектировали специальные электрические и магнитные линзы (квадрупольные) для фокусирования атомных и молекулярных пучков. Таунс думал об использовании таких линз для разделения молекул. Поля таких линз и были использованы в аммиачном мазере и в водородном мазере. Позднее Поль разработал трехмерную версию, способную удерживать ионы в малой области (ловушка Поля). С помощью этого устройства можно исследовать одиночные атомы, что было невозможно раньше. За это Поль был награжден в 1989 г. Нобелевской премией по физике вместе с Н. Рамси и Гансом Демельтом, которые также построили подобную ловушку, но другой конструкции.
Таунс надеялся отселектировать в пучке больше молекул, находящихся в верхнем состоянии, от молекул в основном состоянии. Этим способом он мог бы реализовать то, что мы называем инверсией населенности, и каждая молекула, переходя в нижнее состояние с испусканием кванта, могла бы заставить другие молекулы делать то же самое. В результате резонатор мог бы испускать излучение на частоте около 24 000 МГц. Таунс четко понимал необходимость резонатора, который связывает излучение с возбужденной средой.
Таунс осознавал свою ответственность, в частности, перед Гордоном, который выполнял работу своей докторской диссертации в рамках проекта, результат которого не гарантировался. «Я не уверен, что работа получится, но даже в этом случае мы сможем сделать другие вещи», — в результате Таунс пообещал Гордону, что даже если метод не сработает, он сможет использовать установку для исследований спектров микроволнового поглощения аммиака. Таким образом, Гордон работал в двух направлениях. Он мог изучить сверхтонкую структуру аммиака (разделение энергетических состояний на многие подуровни из-за взаимодействия между электроном и ядром) с большей точностью, чем это удавалось прежде.
Достижения в работе были описаны в квартальных отчетах Факультета и содержали некоторые данные, интересные для тех, кто занимался физикой микроволн. Первая публикация с упоминанием этого мазерного проекта появилась в сообщении Цайгера и Гордона 31 декабря 1951 г., которое было озаглавлено «Молекулярный Пучковый Генератор». В нем сообщались предварительные расчеты основных элементов этого генератора.
В течение двух лет группа Таунса продолжала работать. За это временя, два друга Таунса приходили в лабораторию и старались уговорить его бросить эту чепуху и прекратить тратить казенные деньги (Таунс уже потратил 30 000 $, предоставленных военными).
Наконец, в один из дней апреля 1953 г., Джеймс Гордон вбежал на спектроскопический семинар, который проводил Таунс, с криком: он работает! История говорит, что Таунс, Гордон и другие студенты (Цайгер к этому времени оставил Колумбию и перешел в Линкольновскую лабораторию и его заменил Т. Ванг) отправились в ресторан, чтобы отметить событие и придумать для нового устройства латинское или греческое название (последнее без успеха). Только несколько дней спустя они с помощью некоторых студентов придумали аббревиатуру МАЗЕР — усиление микроволн с помощью стимулированного излучения (MASER — Microwave Amplification by the Stimulated Emission of Radiation). Это название появилось в заголовке работы, опубликованной в Physical Review, но недоброжелатели расшифровывали это, как «способы получения поддержки для дорогостоящих исследований» {Means of Acquiring Support for Expensive Research)\
Блок-схема аппаратуры показана на рис. 42. Через отверстие в маленькой печи с точно поддерживаемой температурой вылетает пучок молекул аммиака. В этом пучке содержатся молекулы, находящиеся как в нижнем, так и в верхнем энергетическом состоянии, причем, что вполне естественно, в нижнем состоянии находится несколько больше молекул. Пучок проходит через систему электродов фокусирующей системы. Эти электроды создают сильное неоднородное электрическое поле, которое разделяет молекулы. Их действие заключается в том, что молекулы в верхнем состоянии продолжают двигаться, прижимаясь к оси системы, а молекулы в нижнем состоянии выталкиваются от этой оси. Такая конструкция позволяет не только разделить молекулы по состояниям, но и несколько сфокусировать молекулы в верхнем состоянии в хорошо коллимированный пучок. Этот пучок входит в объемный резонатор, точно настроенный на частоту перехода аммиака, т.е. на 23 830 МГц. Если в резонатор входит достаточное число молекул в верхнем состоянии, возникает непрерывная генерация, которую можно вывести из резонатора обычной радиочастотной техникой. С другой стороны, система может быть в условиях, когда число молекул недостаточно, чтобы поддержать генерацию, но достаточно, чтобы усиливать внешний сигнал. В этом случае устройство работает как усилитель, разумеется, на той же частоте. Вся система помещается в кожух (не показан на рис.), в котором поддерживается высокий вакуум, нужный для того, чтобы предотвратить столкновения молекул аммиака с молекулами воздуха, что могло бы привести к потере энергии возбуждении в результате обмена энергией. Разумеется, реальная система не столь проста, как показано на рис. 42.
Рис. 42. Схема аммиачного мазера
Принципиальной характеристикой мазера является крайне низкий уровень шумов как в режиме генерации, так и в режиме усиления. Это означает, что сигнал очень чистый и ясный, и все фотоны испускаются когерентно. Лишь очень малое число фотонов испускается хаотически в результате спонтанного, а не вынужденного излучения. Во многих электронных устройствах шумы возникают из-за флуктуации числа электронов, которые создают электрический ток. Эти флуктуации пропорциональны температуре и не зависят от конкретного устройства. Поэтому у инженеров принято характеризовать шумы устройств, относя их к шумам эквивалентной температуры, т.е. температуре, при которой через электрическое сопротивление протекает столько электронов, сколько нужно, чтобы получить наблюдаемые флуктуации. В то время, как для сопротивления обычной цепи температура шума практически является комнатной (т.е. 300 К), для мазера эквивалентная температура шумов очень низкая, порядка нескольких К.
Таунс сразу же понял, что одним из важных применений мазеров на молекулярных пучках должна быть молекулярная спектроскопия. Молекулярные пучки уже в начале 1950-х гг. рассматривались спектроскопистами, изучающими газы. Однако была проблема. Специфика получения молекулярного пучка приводит к малой плотности молекул в ячейке спектрометра. Кроме того, молекулы в пучке находятся в термическом равновесии или близко к нему, а это значит, что процессы поглощения и излучения по отношению внешнего излучения почти равные. Следовательно, сигнал поглощения будет слабым, поскольку число молекул в нижнем состоянии лишь слегка превосходит число молекул в верхнем состоянии. В пучке, который получал Таунс, все молекулы селектировались по их энергетическим состояниям. Это приводит к тому, что сигнал увеличивается в сто раз. Это позволяло Гордону использовать принцип мазера для спектроскопических исследований.