Литмир - Электронная Библиотека
Содержание  
A
A

В предыдущих разделах мы в то же время показали, что черные дыры являются в некотором смысле и очень простыми объектами. Их свойства никак не зависят от свойств сколлапсировавшего вещества, от всех сложностей строения вещества, его атомной структуры, находящихся в нем физических полей, не зависят от того, было ли вещество водородом или железом и т. д. При образовании черной дыры для внешнего наблюдателя все свойства сколлапсировавшего тела как бы исчезают, они не влияют ни на границу черной дыры, ни на что другое во внешнем пространстве, остается только гравитационное поле, характеризуемое лишь двумя параметрами — массой и вращением (как мы уже говорили, присутствие глобального электрического заряда несвойственно небесным объектам). Этим определяются и форма черной дыры, и ее размеры, и все остальные ее свойства. Так что с полной определенностью можно сказать, что нет ничего проще черной дыры: человеческое тело, например, несравненно сложнее, — его двумя числами, как черную дыру, не охарактеризуешь.

По поводу такой удивительной простоты черных дыр американский физик Кип Торн как-то воскликнул: «Представьте себе, что мы могли бы судить о всех особенностях характера женщины только те ее весу и цвету волос!»

Но и нет ничего белее странного, чем черная дыра — ведь человеческое воображение даже не в состоянии представить себе, до какой степени происходит искривление пространства и изменение течения времени, что в них возникает дыра. Изучение физики черных дыр позволяет расширить наши познания о фундаментальных свойствах пространства и времени. Как мы увидим в дальнейшем, в окрестности черных дыр возникают, например, квантовые процессы, обнаруживающие сложнейшую структуру так называемого физического вакуума. Еще более мощные (катастрофически мощные) квантовые процессы происходят внутри самой черной дыры (в окрестности сингулярности). Экспериментальное открытие черных дыр в природе было бы чрезвычайно важным для естествознания. Мы смогли бы изучать новые законы, управляющие свойствами пространства и времени в сильных гравитационных полях, новые законы, управляющие движением материи в необычных условиях. Образно говоря, черные дыры — это дверь в новую, широчайшую область, нашего познания физического мира.

Но насколько реальны черные дыры? Как мы уже говорили, искусственно их изготовить пока нельзя. Однако возможно, как оказалось, возникновение их во Вселенной естественным путем.

Глава IV.

Поиски черных дыр

 
Черные дыры и Вселенная - doc2fb_image_0300000A.png

Они должны существовать

То, что знают астрономы об эволюции звезд, приводит к неизбежному выводу: черные дыры должны возникать в конце жизни массивных небесных тел. Как же протекает их эволюция и почему следует столь определенный вывод?

Вещество обычной звезды, подобной нашему Солнцу, находится под действием двух противоположных сил — тяготения, стремящегося сжать звезду к центру, и давления раскаленных газов, стремящихся ее расширить. Их равенство обеспечивает устойчивое состояние звезды. Но горячая звезда непрерывно излучает энергию с поверхности, и если бы эта потеря не компенсировалась, то звезда потеряла бы свою тепловую энергию и стала бы сжиматься. Однако этого не происходит, ибо вблизи центра звезды, где температура достаточно велика, идут термоядерные реакции, сопровождающиеся выделением огромной энергии. При этом ядерное «горение» претерпевают сначала водород, гелий, а затем и более тяжелые элементы — углерод, кислород и т. д. Термоядерные реакции и являются источником энергии звезд, которую они излучают в пространство.

С течением времени исчерпывается запас ядерного горючего в звезде. Продолжительность ядерного «горения» — этого активного периода жизни звезд — определяется скоростью потери энергии на излучение и запасами ядерного топлива. И то и другое зависит от массы звезды. Поэтому и продолжительность жизни звезды определяется ее массой. Звезды с массой, равной солнечной, живут около 10 миллиардов лет. Более массивные звезды живут меньше. Так, звезда массой 3 массы Солнца живет один миллиард лет, а звезда массой 10 масс Солнца всего 100 миллионов лет.

Когда исчерпается все ядерное топливо, звезда, продолжая терять энергию на излучение, постепенно сжимается. Если масса ее не превышает массу Солнца более чем в 1,2 раза, то сжатие закончится, когда радиус звезды составит несколько тысяч километров. Плотность вещества при этом может достигнуть 109 г/см3. Такие звезды получили название белых карликов. Они уже давно известны астрономам.

После превращения в белый карлик звезда остывает, практически не уменьшая своих размеров. Давление газа, препятствующее дальнейшему сжатию белого карлика, обеспечивается квантовыми силами, возникающими между достаточно тесно упакованными электронами плазмы, составляющей звезду. Это давление в условиях звезды никак не зависит от температуры ее вещества. Поэтому белый карлик может полностью остыть и превратиться в черный карлик, не изменив своего размера.

Если масса звезды более 1,2 массы Солнца, то в ходе ее сжатия плотность вещества превысит 109 г/см3. При такой плотности возникают ядерные реакции, поглощающие много энергии. Равенство сил тяготения и давления нарушается, и звезда начнет стремительно сжиматься.

В процессе этого сжатия может произойти ядерный взрыв, который мы наблюдаем как вспышку сверхновой. При этом звезда сбрасывает оболочку и превращается в так называемую нейтронную звезду. Силы тяготения сжимают ее настолько, что в центре звезды плотность становится сравнима с ядерной — 1014 - 1015 г/см3.

Нейтронная звезда — это своеобразное атомное ядро поперечником в десяток километров. В такой звезде ядерные частицы — нуклоны — очень тесно прижаты друг к другу. Если ее масса не превосходит две массы Солнца, то нуклонный газ способен квантовыми силами воспрепятствовать дальнейшему сжатию звезды. Таково конечное состояние этой остывшей звезды. Правда, понятие холода к нейтронной звезде совершенно неприемлемо с точки зрения земных представлений. Ведь в столь плотном газе тепло никак не должно сказываться на величине давления даже если температура газа сотни миллионов градусов. Поэтому-то, хотя астрофизики часто называют нейтронную звезду холодной, в ее центре температура может достигать сотен миллионов градусов, а на поверхности миллиона.

Долго искали астрономы нейтронные звезды, но безуспешно. И это вполне закономерно. Звезду радиусом 10 километров и с температурой миллион градусов можно увидеть только в самые крупные телескопы, если она к тому же достаточно близка к нам. Дело в том, что излучающая поверхность нейтронных звезд очень мала и они, как правило, испускают видимого света в миллион раз меньше вашего Солнца. Но если мы даже видим нейтронную звезду, остается вопрос, как отличить ее от обычных слабых звезд.

Нейтронные звезды пытались обнаружить по воздействию их тяготения на близлежащие звезды. В тесной двойной системе заметить слабую нейтронную невозможно — она тонет в ярком свете своей соседки. Однако нейтронные звезды имеют такую же массу, как и большинство других звезд. Астрономы стали искать в двойных системах звезды с нормальной массой, но очень низкой светимостью. Однако эти попытки не увенчались успехом.

Открыли нейтронные звезды совершенно случайно в 1967 году английские радиоастрономы, спустя 33 года после их теоретического предсказания. Оказалось, что вблизи поверхности нейтронных звезд, которые обладают сильным магнитным полем, есть активные области, излучающие направленные потоки радиоволн. Такая активная область вращается вместе с поверхностью звезды, излучает пучок направленных радиоволн, как вращающийся прожектор. Этот пучок бежит по небу, и, когда попадает на Землю, мы наблюдаем вспышки радиоизлучения, которые происходят через равные промежутки времени, соответствующие периоду вращения звезды. Эти вспышки и зарегистрировали английские радиоастрономы.

13
{"b":"201417","o":1}