В III–II вв. до н. э. сложилась индийская система обозначения степеней — за пять веков до Диофанта — (III в. н. э.), когда греческая числовая алгебра достигла своей кульминации. В конце ведийской эпохи начала создаваться математическая символика: вторая степень называлась пратхама-варга («первый квадрат»), четвертая — двития-варга («второй квадрат»), восьмая — трития-варга («третий квадрат»); корень второй степени обозначался как пратхама-варга-мула («первый квадратный корень»), корень четвертой степени — двития-варга-мула («второй квадратный корень»). Символами служили первые слоги соответствующих санскритских слов. Следует отметить, что и Диофант, подобно индийским ученым, строил буквенную символику именно для степеней неизвестных; показательно, что и способ образования символов — первые или последние буквы соответствующих терминов — полностью аналогичен индийскому.
Самая ранняя классификация алгебраических уравнений в Индии относится к III в. до н. э.; она составлена в зависимости от степени уравнений — уравнения первой степени, или линейного (яват-тават), квадратного, или второй степени (варга), кубического, или третьей степени (гхана), биквадратного, или четвертой степени (варга-варга). Тогда же даны первые способы решения некоторых типов этих уравнений.
Видное место в индийской математике занимали арифметические и геометрические прогрессии. Некоторые задачи приобрели чрезвычайно широкую популярность — скажем, о награде за изобретение шахмат, сводящаяся к нахождению суммы геометрической прогрессии со знаменателем 2. В «Тайтгирия-самхите» содержатся арифметические прогрессии:! 3, 5… 19; 2, 4, 6… 20; 4, 8, 12… 20; 5, 10, 15… 100; 10, 20, 30…. 100; 19, 29, 39…. 99. В «Панчавимша-брахмане» описывается геометрическая прогрессия со знаменателем 2 и первым членом, равным 12. В «Шатапатха-брахмане» упомянут результат суммирования семи членов арифметической прогрессии с начальным членом 24 и разностью 4. К нахождению этой суммы приводит задача о вычислении числа слогов определенного размера. В джайнской «Кальпа-сутре» дается геометрическая прогрессия 1, 2, 4, 8, 16…. 8192 и ее сумма 16383. Эта профессия играла важную роль не только в математике, но и в стихосложении, когда надлежало вычислить число слогов нужного размера.
Ряд задач на арифметическую и геометрическую прогрессии, аналогичные индийским, содержится в математических руководствах армянского математика Анания Ширакаци (VII в.), итальянца Леонардо Пизанского (XII–XIII вв.), византийского ученого XIV в. Николая Артавазда; они встречаются во многих средневековых западноевропейских руководствах. В «Памятниках минувших поколений» Бируни вычислил сумму 64 членов геометрической прогрессии 1 + 2 + 22 + 24 + … 26, связав ее с индийской легендой о происхождении игры в шахматы.
Немалый интерес индийские ученые проявляли к комбинаторике. Одним из побудительных мотивов к занятию ею послужило ведийское стихосложение, имевшее различные размеры. При создании стихов надо было учитывать не только число слогов, но и долготу гласных звуков в каждой слоговой группе. Это привело к разработке математической теории. Среди ведийских сочинений, посвященных этому вопросу, особого внимания заслуживает трактат «Чханда-сутра» Пингалы (III–II вв. до н. э.).
Самхиты позволяют составить представление и об астрономических знаниях древних индийцев. Здесь встречается упоминание месяца — одной из ранних естественных единиц времени. Он подразделяется на две части: светлую половину (шукла) — до полнолуния и темную (кришна) — от полнолуния до новолуния. Первоначально лунный синодический месяц определялся в 30 дней, потом он был вычислен более точно и составил 29,5 дня. Звездный месяц был больше 27, но меньше 28 дней, что впоследствии отразилось в системе накшатр — 27 или 28 лунных стоянок.
В отличие от вавилонских и древнекитайских астрономов древнеиндийские не составляли звездных каталогов. Для создания календаря, нужного в практических целях, принималось в расчет движение Солнца и Луны. Внимание в основном концентрировалось вокруг тех созвездий, которые лежали вдоль или вблизи эклиптики. Звездная система, служившая для определения пути Солнца и Луны, именовалась системой накшатр.
В «Ригведе», где этот термин употребляется для обозначения и звезд, и лунных стоянок, имеются свидетельства по крайней мере о двух из них: о Магхе и Пхалгуни. Полный список накшатр впервые появляется в «Яджурведе». Названия их остались фактически неизменными на протяжении многих веков.
Историками астрономии давно уже отмечено совпадение древнеиндийской системы накшатр с лунными стоянками в современных звездных каталогах. Каждая накшатра соответствует конкретной группе звезд или отдельной звезде.
Наименования некоторых лунных месяцев были связаны с названиями тех лунных стоянок, в которые появлялась полная луна. На каждый месяц приходятся две или три лунные стоянки, но название свое месяц получал от одной из них.
До сих пор неизвестно точно, содержат ли самые древние ведийские тексты упоминания о конкретных планетах. Семь адитьев «Ригведы» иногда рассматриваются как Солнце, Луна и пять светил — Марс, Меркурий, Юпитер, Венера, Сатурн. Кроме них некоторые тексты называют еще Раху и Кету. Ученые считают, что под ними понимались различные небесные тела — кометы, метеориты, падающие звезды — или такие явления, как затмение.
От названия светил произошли названия дней недели: воскресенье — адитья-вара (день Солнца), понедельник — сама-вара (день Луны), вторник — мангала-вара (день Марса), среда — будха-вара (день Меркурия), четверг — брихаспати-вара (день Юпитера), пятница — шукра-вара (день Венеры), суббота — шашайшчара-вара (день Сатурна). Порядок, в котором древние индийцы располагали небесные светила, был установлен в соответствии с последовательностью дней недели. Для обозначения светил на астролябиях индийцы использовали первые буквы их наименований: например, «а» для Солнца — от «Адитья», «ч» для Луны — от Чандра, «б» для Меркурия — от «Будха» и т. д.
В ведийскую эпоху существовали следующие лунно-солнечные календари: а) звездный год продолжительностью 324 дня — 12 месяцев по 27 дней каждый; б) звездный год продолжительностью 351 день — 13 месяцев по 27 дней: в) лунный год продолжительностью 354 дня — 6 месяцев по 30 дней и 6 месяцев по 29 дней; г) гражданский, или год Савана, продолжительностью 360 дней — 12 месяцев по 30 дней; д) год продолжительностью 378 дней.
Для приведения их в соответствие с солнечным годом к ним прибавляли 9, 12, 15, 18 дней, так называемые вставки — интеркаляции. В ведийской литературе имеются ссылки на интеркаляции в 21 день, они приписывались к каждому четвертому году Савана.
Такой четырехлетний период составлял 1461 день, а год равнялся 365 1/4 дня. В «Тайттирия-самхите» говорится о годе из 360 дней, к которому для совершения жертвоприношений добавляли еще 5 дней; таким образом, уже в то время индийцы знали год продолжительностью в 365 или даже 365 1/4 дня.
В первые века нашей эры появляются сочинения, призванные дать «правильное решение» астрономических вопросов — сиддханты (сам термин означает «решение», «окончательное утверждение»). На протяжении многих веков они тщательно комментировались, дополнялись и перерабатывались. Наибольшую известность получили пять «классических» сиддхант, но по своей научной ценности они не равнозначны. «Пайтамаха-сиддханта», составление которой традиции приписывает богу Брахме, содержит сведения, целиком взятые из ведийских сочинений. «Васиштха-сиддханта», получившая название по имени одного из семи мифических мудрецов, отождествляемых с семью звездами Большой Медведицы, более оригинальна. В ней перечисляются способы определения точки эклиптики над горизонтом по длине тени и средней долготы дня по размерам полуденной тени. Интересны упоминания о движении пяти планет — Венеры, Юпитера, Сатурна, Марса, Меркурия — и вычисление их синодических периодов. По этой сиддханте продолжительность солнечного года составляет 365,35 дня, звездного года — 365,25 дня.