Из энциклопедии метеоритики
Метеориты входят в атмосферу со скоростями порядка десятков километров в секунду. Минимальная скорость определяется силой притяжении захваченного Землей космического тела, и она не может быть меньше, чем 11,2 км/с. Максимальные же скорости входа метеорита в атмосферу могут достигать 72–74 км/с, если метеорные тела имеют солнечное происхождение. Ну, а если они еще и залетные, то не хотелось бы с ними встречаться вообще, в этом случае скорости непредсказуемы.
При столь больших скоростях перед несущимся в атмосфере — болидом образуется ударная волна. То есть он летит столь стремительно, что успевает собрать воздух перед собой в плотную гармошку, практически сжать его. Приближение к поверхности земли приводит к возникновению в сжатом ударной волной слое газа перед болидом давлений и температур быстро достигающих величин в десятки тысяч атмосфер и десятки тысяч градусов. Именно разогретый до таких чудовищных температур газ и дает основное свечение в нормальных метеоритах.
Наш метеорит почему-то даже в этом случае опять оказался ненормальным. Слой светящегося газа у летящего тела достаточно близко прилегает к поверхности метеорита. Он, конечно, может зрительно увеличить размеры метеорита в 2 или даже в 3 раза. Но не в десятки раз, как у нас здесь получается.
Пятое крамольное заключение
Из материалов В. Скребы
Чем же объяснить наблюдавшиеся размеры Тунгусского метеорита? Только одним.
Проведем аналогию с кометами. Приближаясь к Солнцу, кометы значительно увеличивают свои видимые размеры. Это связано с тем, что при нагревании излучением Солнца из ядра кометы во все стороны выбрасываются газы и пылевые частицы. И вокруг плотного ядра образуется многократно превышающая его по размерам туманная оболочка — кома.
Мы приходим к очередному крамольному выводу:
Во время полета Тунгусский метеорит сбрасывал вещество со своей поверхности. Причем оно не просто стекало в виде капель, а как бы отщелкивалось с поверхности, отлетая от него со значительными скоростями. То есть вещество Тунгусского метеорита имело способность взрываться при нагревании, сжатии или по каким-то другим неведомым причинам.
Итак, выводы Володи свидетельствуют о том, что отлетающие от компактного Тунгусского метеорита фрагменты сгорали в атмосфере. При этом создавалась видимость светящегося облака, снопа с разлетающимися искрами, аморфного пламени… Диаметр этого светящегося облака многократно превышал размеры самого тела[9]. Почему фрагменты отщелкивались, а не просто стекали с поверхности? А потому что частицы должны были пролетать несколько километров в сторону от метеорита, создавая горящую светящуюся оболочку. Только тогда очевидцы наблюдали бы объект размером значительно больше Солнца. Если бы частицы просто стекали, как это происходит при полете железных метеоритов, то капли просто догорали бы или остывали в хвосте. В таком случае многократного увеличения размеров тела получить бы не удалось. И нормальный метеорит с диаметром в 100 м вряд ли вообще кто-то смог бы заметить с расстояния в 200–300 км.
В этом случае его диаметр был бы в 30 раз меньше видимого диаметра Солнца.
Таким образом, получается, что нам теперь надо в составе Тунгусского метеорита обнаружить вещество, способное взрываться при нагревании или сжатии.
Из материалов В. Скребы
…Несомненно, такое вещество существует, должно существовать. Не на Земле, так (где-нибудь в другом месте. Да и что мы, в самом деле, пытаемся применять к Тунгусскому пришельцу свои, земные, мерки? Прилетевший сюда извне он должен был и состоять из вещества, свойственного пространству возне. Глупо думать, что метеориты — генетические братья наших булыжников. Хорошо, не булыжников. Но каких-то общеизвестных пород, которые можно разложить на вещества таблицы Менделеева. Я более чем уверен, что тут-то как раз было нечто совсем другое. Может быть, какая-то непонятная и незнакомая нам порода. А может быть — сплав, из которого была изготовлена ультрапрочная обшивка. Впрочем, что уж тут говорить об особой прочности, если вещество разрушалось под воздействием факторов нагрева и сжатия?
Я, как обычно, сидела за ноутбуком и сводила скребины материалы с материалами, почерпнутыми мною в библиотеках. Вечерело. Мой хохлатый нахал угрюмо сидел на подушечке, распушив перья и негромко ругаясь. Я уже стала беспокоиться — здорова ли моя суетливая птица, как попугай встал и расправил крылья. И тут я увидела яйцо. Нормальное птичье яйцо. Сколько же сюрпризов таит в себе этот желтопузый залетный птах? Я смотрела на попугая круглыми глазами. Он начал что-то горячо объяснять. В щебетании явно слышались обиженные нотки. Он всем своим видом словно спрашивал меня:
— Ты что, искренне считаешь, что это я снес? Я что, похож на курицу?
Потом птах опять водрузился на яйцо и огорченно отвернулся от меня. Я принесла ему из морозильника рыбы. И вот тут моя хохлатая наседка чуть не свалилась со своего импровизированного гнезда от удивления.
Дробящаяся гора
Насколько мне удалось понять из Володиных записей и из пояснений Андрея, в теоретическом объяснении движения Тунгусского метеорита существует много вопросов.
Войдя в земную атмосферу, метеорит двигался со значительной скоростью (ученые полагают, что речь шла не менее чем о 60 км/с). Однако на последнем участке траектории его скорость не превышала 1–2 км/с[10]. Если бы столь крупное тело летело с большей скоростью, то в тайге отпечаталась бы проекция траектории в виде полосы поваленных на две стороны деревьев, так называемый полосовой вывал леса. Этого в зоне катастрофы не наблюдалось.
Проблема состоит в том, что не удается объяснить, как метеорит затормозился. Это как в старом фильме:
— Тормози!
— Не тормозится.
— Тормози!
— Не тормозится.
Из материалов В. Скребы
Метеориты столь большого размера, как Тунгусский, практически не замечают земной атмосферы. Она для них представляет незначительное препятствие. Они практически не теряют массу во время полета и вообще не претерпевают сколько-нибудь значительных изменений. Однако, когда давление на лобовой поверхности метеорита превышает его прочность, метеорит начинает разрушаться. Если кусок камня положить под пресс и постепенно увеличивать нагрузку, то в какой-то момент камень развалится на куски. Практически то же самое происходит и с летящим метеоритом. Крупные метеориты дробятся, их фрагменты уже могут затормозиться в атмосфере и выпасть на землю отдельными глыбами. Если метеорит прочный, как, например, железные метеориты, то он достигает поверхности, не дробясь. В том случае, когда его скорость превышает 4–5 км/с, метеорит может взорваться. И на поверхности Земли станет одним кратером больше.
То есть метеорит летит, не теряя своей космической скорости, до того момента, пока, взорвавшись, не разваливается на части. Тунгусский же метеорит сумел сильно затормозиться, а потом вдруг взорвался. Все не как у людей.
Незначительная потеря скорости при прохождении земной атмосферы — это правило абсолютно справедливо для крупных и плотных метеоритов. Следовательно, возвращаемся к последнему крамольному заключению Скребы: метеорит не был плотным. В процессе полета он дробился, причем это было взрывное дробление.
Я себе представляю это так. Как только давление на лобовую поверхность нашего метеорита превышало какую-то критическую величину, или она прогревалась до какой-то определенной температуры — из нее выбрасывались фрагменты.
Причем выбрасывались, главным образом, в сторону движения метеорита. При этом по закону сохранения импульса скорость метеорита уменьшалась. Если бы фрагменты выбрасывались равномерно во все стороны, то торможения бы не было. Но в нашем случае нагревалась, сдавливалась и, соответственно, дробилась только лобовая поверхность тела. Это все работало как реактивный двигатель, только не разгоняющий, а тормозящий.