С другой стороны, чем совершеннее рабочий процесс двигателя, тем также больше скорость истечения. Поэтому, например, более удачная конструкция двигателя, в частности, сопла, позволяющая лучше организовать истечение, т. е. добиться, чтобы скорости молекул газа на выходе из двигателя имели одинаковое направление и были большими по величине, также приводит к увеличению тяги.
Такое же влияние оказывает давление газов в камере сгорания двигателя. Чем больше это давление по сравнению с атмосферным, т. е. с давлением газов на выходе из двигателя, тем большая доля тепла переходит в скоростную энергию газов и поэтому больше скорость истечения и тяга двигателя, рассчитанного на это увеличенное давление.
Из всех внешних условий (скорость полета, состояние атмосферы и др.) только атмосферное давление оказывает некоторое, да и то небольшое, влияние на рабочий процесс ракетного двигателя. Эта независимость рабочего процесса от внешних условий является важным свойством ракетного двигателя. Благодаря этому свойству скорость истечения и секундный расход газов, а следовательно, и тяга ракетного двигателя, также остаются постоянными при изменении внешних условий.
Только при изменении атмосферного давления, например с изменением высоты полета, тяга несколько изменяется — с увеличением высоты тяга растет.
Особенно важным является то, что тяга остается постоянной при изменении скорости полета.
Мощность ракетного двигателя
Мощность, развиваемая двигателем, т. е. механическая работа, совершаемая им в единицу времени (секунду), является важнейшей характеристикой любого двигателя. Это и естественно, если иметь в виду, что именно совершение этой механической работы за счет израсходования определенного количества энергии другого вида — тепловой, электрической или еще какой-либо — и является назначением всякого двигателя. В соответствии с этим двигатели подразделяются на электрические, тепловые и т. д.
Обычно мощность, развиваемая каким-либо двигателем, может быть использована самыми разнообразными способами. Для этого вал двигателя связывают с тем или иным потребителем механической работы. Так, например, поршневой двигатель внутреннего сгорания может быть установлен на электростанции и вращать ротор динамомашины, тогда мощность двигателя будет преобразовываться в электрическую энергию; он может вращать трансмиссию в цехе и приводить таким образом в движение станки; может быть установлен на автомобиле для привода его ведущих колес; наконец, может вращать пропеллер самолета и т. д. Во всех этих случаях мощность двигателя будет неизменной, она будет только по-разному расходоваться. В частности, для нас очень важно, что мощность такого двигателя, установленного, допустим, на самолете, будет также одинаковой, вне зависимости от того, неподвижен ли самолет, стоящий на аэродроме, или летит со скоростью в сотни километров в час.
Именно этим свойством обычного поршневого авиационного двигателя объясняется то, что он перестал удовлетворять требованию непрерывного роста скорости полета, характерному для современной авиации.
Действительно, мощность, потребная для полета данного самолета, очень быстро растет при увеличении скорости полета, пропорционально кубу этой скорости. Значит, при увеличении скорости полета в два раза потребная мощность вырастет соответственно в восемь раз. Еще значительнее становится рост потребной мощности при приближении скорости полета к скорости звука, т. е. скорости, с которой звук распространяется в воздухе (немногим более 1200 км/час вблизи земли), что объясняется дополнительным сопротивлением, связанным с явлением сжимаемости воздуха при этих скоростях.
Установка на самолетах все более мощных двигателей приводит лишь к незначительному увеличению скорости полета. Более мощные двигатели оказываются и более тяжелыми (вес двигателя увеличивается почти пропорционально его мощности), а также большими по размерам, вследствие чего для их установки требуются и большие по размерам самолеты. Но это в свою очередь увеличивает мощность, потребную для полета с данной скоростью.
Выход из этого заколдованного круга был найден применением двигателей принципиально иного типа — двигателей прямой реакции в частности, ракетных. Поэтому не без основания говорят что применение реактивных двигателей в авиации представляет собой настоящую техническую революцию.
Ракетный двигатель в смысле развиваемой им мощности ведет себя совсем иначе, чем, например, поршневые двигатели внутреннего сгорания.
B этом легко убедиться.
Как известно, мощность — это работа, произведенная за секунду, работа же есть действие силы на некотором пути. Поэтому величина работы определяется произведением силы на пройденный в направлении ее действия путь, а мощность соответственно равна произведению силы на скорость. Если мощность измерять в лошадиных силах, то, как известно, величину секундной работы в килограммометрах нужно еще разделить на 75, так как 1 л. с. = 75 кгм/сек; таким образом:
Чему же равна мощность ракетного двигателя? Так как реактивная сила, т. е. тяга, развиваемая двигателем, от скорости передвижения не зависит, то мощность ракетного двигателя оказывается прямо пропорциональной скорости полета.
Когда двигатель неподвижен — например, испытывается на станке, — его мощность равна нулю, несмотря на то, что тяга, развиваемая двигателем, может быть при этом очень велика. Мощность становится значительной лишь при больших скоростях передвижения.
Это свойство ракетного двигателя характеризует его как двигатель специфически транспортный; мало того, как двигатель для аппаратов, передвигающихся с очень большими скоростями, возможными лишь в воздухе и вне пределов атмосферы, т. е. двигатель для самолетов, снарядов, ракет.
На малых скоростях ракетный двигатель развивает весьма незначительную мощность, но зато при увеличении скорости мощность возрастает и может достигать значений, недосягаемых для других тепловых двигателей. Это обстоятельство позволяет получить с помощью ракетного двигателя скорость полета значительно большую, чем с помощью обычных (поршневых) авиационных двигателей.
Как велика может быть мощность ракетного двигателя, видно из следующего примера, относящегося к одной дальнобойной ракете.
На этой ракете установлен ракетный двигатель (он будет описан подробно в разделе о жидкостно-реактивных двигателях), развивающий тягу в 25 тонн. При запуске ракеты, когда скорость ее равна нулю, мощность двигателя также равна нулю. Но когда ракета, примерно через 1 мин. после старта, достигает высоты около 40 км, ее скорость становится очень большой, порядка 1500 м/сек (около 5500 км/час). Подсчитаем по нашей формуле мощность, которую развивает двигатель в этот момент:
Конечно, такую колоссальную мощность (полмиллиона лошадиных сил!) не в состоянии развить ни один тепловой двигатель при тех размерах и весе, которые имеет двигатель этой ракеты.
Ракетный двигатель совершает полезную работу за счет израсходования скоростной энергии газов, вытекающих из двигателя в атмосферу.
Доля тепловой энергии топлива, переходящей в скоростную энергию газов и, следовательно, величина этой скоростной энергии, от скорости полета не зависит.
В то же время мощность двигателя при изменении скорости полета меняется.
Это означает, что в зависимости от скорости полета скоростная энергия вытекающих из двигателя газов по-разному используется для совершения полезной работы[3].
Преобразование скоростной энергии газов в полезную работу двигателя полностью определяется скоростью полета. Некоторые характерные в этом отношении (режимы полета ракеты или самолета с ракетным двигателем представлены на фиг. 8. Верхний рисунок на этой фигуре соответствует режиму взлета — двигатель работает, но ракета неподвижна, скорость полета равна нулю. При этом полезная работа, т. е. мощность двигателя, тоже равна нулю. Куда же расходуется скоростная энергия струи газов, с большой скоростью вытекающих из двигателя? Очевидно газы, которые в этом случае мчатся относительно земли со скоростью, равной скорости истечения, уносят с собой эту скоростную энергию, которая затем бесполезно рассеивается в атмосфере.