Литмир - Электронная Библиотека
Содержание  
A
A

Вот почему на новейших скоростных самолетах начинают все шире применяться сплавы титана, легкие и сохраняющие прочность при гораздо более высоких температурах. Не зря титан называют иногда металлом будущего в авиации. Вот почему некоторые новейшие самолеты построены из нержавеющей стали. Вот почему в кабинах некоторых из таких самолетов установлены рефрижераторные, холодильные, установки для охлаждения летчика, а заодно и важнейших частей самолета. Подобные установки мало похожи на комнатные холодильники. Их холодопроизводительность достаточна, чтобы охладить в жаркий день средних размеров театр, создав в нем приятную прохладу.[120]

Но, конечно, такие меры не являются радикальными, ибо это не борьба с аэродинамическим нагревом самолета в полете, а приспособление к нему. Грядущее увеличение скорости полета может сделать все эти меры несостоятельными. Ведь уже сейчас в полете стратосферных ракет достигаются температуры во многие сотни градусов. Так, дальняя ракета, о которой мы говорили в главе 6, на нисходящей ветви траектории своего полета нагревается до 700°.[121]

Путешествие к далеким мирам - _213.png
Посадка межпланетного корабля с торможением двигателем.

Совершенно очевидным становится единственно возможный путь устранения перегрева самолета в полете — этот путь, по существу, во многом определяет направление дальнейшего развития авиации. Он заключается в увеличении высотности самолетов. Летать быстро можно только на большой высоте, и чем быстрее, тем, вообще говоря, выше. На больших высотах воздух разрежен. Это уменьшает его сопротивление и, значит, потребную мощность двигателя, которая при полетах с большой скоростью у Земли могла бы стать несоразмерно большой. Вместе с тем на больших высотах нагрев самолета уменьшается. Разреженный воздух сообщает ему меньше тепла, а излучение его самолетом в окружающее пространство увеличивается, поэтому температура поверхности самолета снижается. При космических скоростях полет должен совершаться на очень больших высотах, чтобы не было перегрева. Вероятно, полностью эта опасность будет исключена на высотах порядка 100 километров. Именно на этих высотах появляются обычно вспышки метеоров. Холодные небесные камни врываются в атмосферу со скоростью в десятки тысяч километров в час. В результате аэродинамического нагрева камни сильно раскаляются и в большинстве случаев испаряются, превращаясь в раскаленный, светящийся сгусток газов и паров, который мы и видим как «падающую звезду». Точнее говоря, светится главным образом подушка уплотненного и раскаленного воздуха, мчащаяся перед метеором. Температура в ней достигает 200 000°, давление — сотен атмосфер. Только наиболее крупные метеориты, или же обладающие меньшей скоростью, достигают поверхности Земли. Поэтому так сравнительно редки случаи падения на Землю метеоритов, в колоссальном количестве врывающихся ежедневно в земную атмосферу.

Путешествие к далеким мирам - _214.png
График зависимости температуры нагрева самолета от скорости полета и высоты.

Кстати сказать, если до последнего времени метеоритами интересовались только астрономы, работающие в области метеоритики, то теперь они привлекают большой интерес специалистов по ракетной технике и астронавтике. Это неудивительно, ведь метеориты — единственные пока «космические корабли», совершившие «посадку» на Землю. И нужно сказать, что в общем эта посадка происходит довольно благополучно. Как установлено специальными исследованиями, железные метеориты теряют сравнительно небольшую массу на испарение, да и прогрев их оказался неожиданно малым, всего на глубину нескольких миллиметров, хотя поверхность метеорита нагревается до нескольких тысяч градусов и оплавляется. Чем это объясняется? Может быть, секрет заключается в специфической структуре, то есть строении, железных метеоритов? Не зря этим так интересуются сейчас металлурги, которым предстоит создавать сплавы для ракет и космических кораблей.

Технику посадки корабля на Землю можно представить себе следующим образом, хотя, конечно, окончательная разработка этой проблемы может быть сделана только после получения гораздо большего опыта полета самолетов и ракет в верхних слоях атмосферы. Корабль должен приближаться к Земле под малым углом к ней, чтобы поле земного тяготения вначале мало сказывалось на его скорости. Вот почему посадка, как указывалось в предыдущей главе, должна напоминать горизонтальный выстрел из пушки. Затем включается двигатель, и скорость корабля в результате торможения его реактивной струей постепенно снижается. В связи с уменьшением скорости корабля траектория его становится более крутой, и двигатель выключается. Этому может соответствовать высота порядка 50 — 100 километров. Дальнейший спуск происходит с использованием аэродинамического торможения, в чем большую роль играют крылья корабля. Дополнительное увеличение тормозящего эффекта может быть получено с помощью аэродинамических тормозов, широко применяющихся в авиации закрылков, и т. п. Могут быть применены и специальные парашюты для торможения, которые уже применяются в авиации.

Путешествие к далеким мирам - _215.png
Траектория посадки межпланетного корабля. Скорость гасится торможением в атмосфере.
Путешествие к далеким мирам - _216.png
Посадочный планер, предложенный Кондратюком, входит в земную атмосферу.

Когда скорость корабля уменьшится до 100–150 метров в секунду, он начинает вертикальный спуск на парашюте, кормой вперед, причем скорость снижения постепенно падает до 10–15 метров в секунду. Вблизи Земли летчик корабля на короткое мгновение снова включает двигатель, последний толчок, гасящий остатки скорости, — и корабль тихо и плавно садится на амортизированные опоры.

Вместо первоначального гашения скорости корабля при приближении к Земле с помощью двигателя можно и его осуществить, используя сопротивление атмосферы, как было предложено еще Циолковским, а затем Кондратюком, Цандером и другими. Для этой цели корабль должен совершать многочисленные полеты вокруг Земли по все укорачивающимся эллиптическим орбитам. Пролетая вблизи Земли, он будет постепенно гасить свою скорость в результате сопротивления атмосферы. Для необходимого снижения скорости должно быть сделано много таких кругосветных облетов, и хотя они не связаны с расходом топлива, но опасны и утомительны. Может оказаться, что одним только аэродинамическим торможением вообще нельзя будет ограничиться, в особенности в первое время, из-за нагрева, который может привести к расплавлению металлических стенок корабля.

Вероятно, целесообразнее будет при посадке на Землю примерно половину всей скорости корабля погасить с помощью двигателя, а остальную половину — в результате аэродинамического торможения. Реально будет, в особенности на первое время, если мы увеличим идеальную скорость межпланетного корабля при взлете с Земли на 5–6 километров в секунду, имея в виду обратную посадку, то есть, попросту говоря, возьмем с собой соответственно больше топлива.

Эта затрата топлива будет сведена к минимуму, когда в будущем — по мере развития науки, изучения явлений теплопередачи в условиях полета межпланетного корабля в верхних слоях атмосферы, получения более жаропрочных конструкционных материалов и усовершенствования систем охлаждения — можно будет осуществить всё или почти всё торможение корабля только за счет аэродинамического сопротивления. При этом не будет необходимости строить весь корабль из особо жаропрочных материалов. Достаточно будет изготовить из этих материалов только определенные участки поверхности крыла.

вернуться

120

Эти установки обычно делаются турбинного типа — воздух охлаждается в них, расширяясь в специальной турбине, которая делает иной раз более 100 тысяч оборотов в минуту. Применяются и такие рефрижераторные установки, в которых воздух охлаждается, передавая тепло испаряющемуся теплоносителю, обычно фреону, как это делается и в некоторых комнатных холодильниках.

вернуться

121

Кинетическая энергия ракеты весом 20 тонн, движущейся со скоростью 10 километров в секунду, равноценна теплу, выделяющемуся при сгорании 20 тонн высокосортного бензина. Тонна на тонну! Это показывает, как трудно затормозить ракету, рас сеивая выделяющееся при этом тепло.

65
{"b":"191588","o":1}