Теория струн заимствует у теории Калуцы‑Клейна общую идею, что осуществление великого синтеза физических сил требует наличия дополнительных измерений. Доказательство отчасти основано на тех же постулатах: всем четырем существующим в природе взаимодействиям – гравитационному, электромагнитному, слабому и сильному – в четырехмерной теории просто не хватает места. Если воспользоваться подходом Калуцы и Клейна и задаться вопросом, сколько измерений необходимо, чтобы соединить все четыре силы в рамках единой теории, то с учетом пяти измерений, необходимых для гравитации и электромагнетизма, пары измерений для слабого взаимодействия и еще нескольких для сильного, окажется, что минимальное число измерений равно одиннадцати. Впрочем, это не совсем так – что в числе прочего было показано физиком Эдвардом Виттеном.
К счастью, теория струн не основана на столь произвольном обращении с физическими понятиями, каким является выбор случайного числа измерений и пропорциональное ему расширение матрицы или метрического тензора Римана с последующей оценкой, сколько и каких сил поместится в этот тензор. Напротив, теория точно предсказывает число необходимых измерений, и это число равно десяти – четыре «обычных» пространственно‑временных измерения, исследуемых при помощи телескопов, плюс шесть дополнительных.
Причина, по которой теория струн требует наличия именно десяти измерений, весьма сложна и основана на необходимости сохранения симметрии – важнейшем условии построения любой фундаментальной теории, – а также на необходимости достижения совместимости с квантовой механикой, являющейся, несомненно, одним из ключевых ингредиентов любой современной теории. Но по сути объяснение сводится к следующему: чем больше число измерений системы, тем больше в ней число возможных колебаний. Чтобы воспроизвести весь диапазон возможностей для нашей Вселенной, число допустимых типов колебаний, согласно теории струн, должно быть не просто очень велико, а еще и четко определено – и это число можно получить только в десятимерном пространстве. Несколько позже мы обсудим еще один вариант, или «обобщение» теории струн, носящее название М‑теории и требующее одиннадцати измерений, но в настоящий момент мы не будем его касаться.
Струна, колебания которой ограничены одним измерением, может колебаться только в продольном направлении – путем сжатия и растяжения. В случае двух измерений колебания струны возникнут как в продольном , так и в перпендикулярном к нему поперечном направлении. Для трех и более измерений число независимых колебаний будет продолжать расти до тех пор, пока размерность не станет равной десяти (девять пространственных измерений и одно временное) – именно тот случай, в котором удовлетворяются математические требования теории струн. Вот почему теория струн требует как минимум десяти измерений. Строго говоря, причина, по которой теория струн требует ровно десять измерений, а не больше и не меньше, относится к понятию о сокращении аномалий , которое возвращает нас в 1984 год, к тому месту, на котором я прервал повествование.
Большинство струнных теорий, разработанных на тот момент, страдали наличием аномалий или несовместимостей, делающих все их предсказания бессмысленными. Эти теории, к примеру, приводили к возникновению неверного типа лево‑правой симметрии – несовместимой с квантовой теорией. Ключевой прорыв был сделан Майклом Грином, в то время работавшим в Колледже Королевы Марии в Лондоне, и Джоном Шварцем из Калифорнийского технологического института. Основная проблема, которую удалось преодолеть Грину и Шварцу, относилась к так называемому нарушению четности – идее о том, что фундаментальные законы природы несимметричны в отношении зеркального отражения. Грин и Шварц обнаружили способ формулирования теории струн в таком виде, который подразумевал, что нарушение четности в системе действительно имеет место. Квантовые эффекты, из‑за которых в теории струн возникали всевозможные несоответствия, в десятимерном пространстве удивительным образом взаимно уничтожились, породив тем самым надежды на то, что именно эта теория и является истинной. Успех Грина и Шварца обозначил начало того, что впоследствии было названо первой струнной революцией. То, что им удалось обойтись без аномалий, позволило говорить о способности данной теории привести к объяснению вполне реальных физических эффектов.
Отчасти задача исследователя состоит в том, чтобы убедиться в способности теории струн дать ответ на вопрос: почему Вселенная именно такова, какова она есть? Этот ответ должен объяснить и причину, по которой пространство‑время, в котором мы живем, выглядит четырехмерным, в то время как теория настаивает на его десятимерности. В теории струн это кажущееся несоответствие объясняется компактификацией . Это понятие не является совершенно новым, поскольку Калуца и Клейн (особенно Клейн) уже предполагали, что дополнительное измерение в их пятимерной теории на самом деле компактифицировано – сжато до столь малых размеров, что увидеть его было попросту невозможно. В аналогичной ситуации оказались и струнные теоретики – только они имели в своем распоряжении не одно, а шесть «лишних» измерений.
Слово «лишние» вводит в заблуждение, поскольку мы на самом деле не пытаемся избавиться от каких‑либо измерений. Задача состоит в том, чтобы неким замысловатым образом свернуть эти измерения – придать им строго определенную геометрическую форму, которая позволила бы произвести магический акт компактификации, составляющий одну из основных задач теории струн. При этом количество возможных геометрий, ведущих к различным способам компактификации, чрезвычайно велико.
Вся идея, по словам гарвардского физика Кумруна Вафы, может быть представлена в виде простого уравнения, понятного каждому: 4+6=10 .[54] Этим можно ограничиться, хотя вы, возможно, захотите переформулировать его в виде: 10‑6=4 , означающем, что, скрыв (или вычтя) шесть измерений, мы получим десятимерную Вселенную, кажущуюся нам четырехмерной. Компактификацию с тем же успехом можно рассматривать как своеобразную разновидность умножения, известную как декартово, или прямое , произведение – произведение, в котором количества измерений складываются, а не умножаются. Соответствующее уравнение, описывающее результирующее многообразие, в котором четыре измерения объединяются с шестью (4Ч6=10 ), предполагает, что наше десятимерное пространство‑время имеет подструктуру, являющуюся прямым произведением четырех‑ и шестимерного пространства‑времени, точно так же как плоскость представляет собой прямое произведение двух линий, а цилиндр – прямое произведение линии и окружности. Цилиндр, как уже говорилось, представляет собой наглядную и часто используемую иллюстрацию идеи Калуцы и Клейна. Если вы представите наше четырехмерное пространство‑время в виде линии, имеющей бесконечную протяженность в обоих направлениях, а затем мысленно разрежете ее и рассмотрите один из концов в микроскоп, то сможете увидеть, что на самом деле эта линия имеет некую толщину, и правильнее было бы говорить о ней не как о линии, а как о цилиндре, хотя и очень маленького радиуса. Именно внутри этой окружности крошечного радиуса и спрятано пятое измерение теории Калуцы‑Клейна. Теория струн продвигает эту идею на несколько шагов дальше, утверждая, что, посмотрев на сечение этого тонкого цилиндра при помощи еще более мощного микроскопа, можно обнаружить не одно, а целых шесть скрытых внутри него измерений. Независимо от того, где вы находитесь – в четырехмерном пространстве‑времени или на поверхности бесконечно длинного цилиндра, – к каждой точке прикреплено крошечное шестимерное пространство. И независимо от того, где вы находитесь в этом бесконечном пространстве, можете быть уверены, что компактное шестимерное пространство, спрятанное «по соседству», будет точно таким же.
Эта картина, конечно, является весьма грубой и схематичной и ничего не говорит нам о подлинной геометрии этого компактифицированного шестимерного мира. Возьмем, к примеру, обычную сферу, представляющую собой двухмерную поверхность, и мысленно сожмем ее в точку, то есть превратим ее в нульмерный объект. Таким образом, мы компактифицировали два измерения, превратив их в ничто. Можно попытаться таким же образом свести десять измерений к четырем, сжимая теперь уже шестимерную сферу a2+b2+c2+d2+e2+f2=1 , но в качестве геометрии дополнительных измерений этот вариант не пройдет; уравнения теории струн требуют строго определенной структуры шестимерного пространства, и обычная сфера этим требованиям не соответствует.