Литмир - Электронная Библиотека
Содержание  
A
A

Необходимую точность измерений удалось получить только после изобретения так называемого торсионного баланса французским физиком Шарлем Огюстеном Кулоном в 1777 году и английским геологом Джоном Мичеллом.

Вместо того чтобы использовать пружину или весы с чашечками, было решено обратиться к скручиванию струны или нити.

Если струна или нить очень тонки, то требуется приложить очень малую силу, чтобы произошло их скручивание. Чтобы определить его, необходимо прикрепить вертикальную нить к центру длинного горизонтального стержня. Даже маленькое скручивание приведет к большому перемещению конца стержня. Если используется тонкая нить и длинный стержень, торсионный баланс может быть очень точным — достаточно точным для определения малого гравитационного поля любого объекта.

В 1798 году английский химик Генри Кавендиш применил принцип торсионного баланса к определению значения G.

Предположим, что у нас есть стержень длиной шесть футов, на каждом конце которого находится по свинцовому шарику диаметром два дюйма. Подвесим этот стержень за центр на тонкой нити.

Если приложить очень малую силу к свинцовому шарику на одной из сторон, то горизонтальный стержень повернется и нить, к которой он привязан, скрутится. Скрутившаяся нить будет «пытаться» раскрутиться. Чем больше нить скрутится, тем сильнее сила раскручивания. В конце концов сила противодействия скручиванию уравновешивает силу, вызывающую скручивание, и нить замрет в новом устойчивом положении. Из величины, на которую изменится положение нити, можно определить величину силы, воздействующую на свинцовый шар.

(Естественно, вы можете поместить все устройство в ящик и перенести его в герметично закрытую комнату, где отсутствуют факторы, искажающие картину.)

Если стержень изменяет положение очень мало, это означает, что даже незначительное скручивание тонкой нити вызывает достаточное противодействие, чтобы сбалансировать приложенную силу. Тогда следует прилагать малую силу — а это именно то, что искал Кавендиш.

Он прикрепил свинцовые шары к концам стержня, а потом подвесил по такому же шару диаметром восемь дюймов с каждой стороны стержня.

Гравитационное поле больших свинцовых шаров теперь могло служить для скручивания нити и вынудить стержень занять новое положение (см. рис.).

Земля и космос. От реальности к гипотезе - i_003.png

Кавендиш повторял этот эксперимент снова и снова и из изменения положения стержня (и, следовательно, из скручивания нити) определил значение f в уравнении 3. Поскольку он знал значения m, m' и d, он смог вычислить значения G.

Полученное Кавендишем значение менее чем на 1 % отличается от принятого ныне, которое равно 0,000000000667 м3/кг × с2. (Не спрашивайте, в каких единицах было определено значение; эти единицы необходимы для того, чтобы сохранилась размерность уравнения.)

Определив значения G в данных единицах, мы можем решить уравнение 4 — и если используем правильные единицы, то можем узнать общую массу Земли в килограммах. Оказывается, масса Земли составляет 5 983 000 000 000 000 000 000 000, или 5,983 × 1024, килограммов. (Если вы хотите выразить эту величину словами, то можно сказать, что масса Земли составляет около шести септиллионов килограммов.)

Получив массу Земли в килограммах, мы также можем определить и массу других объектов — при условии, что их отношение к массе Земли известно.

Луна, масса которой составляет 1/81 массы Земли, имеет массу 7,4 × 1022 килограмма. Юпитер массой в 318 масс Земли — 1,9 × 1027 килограмма. Солнце с его массой, составляющей 330 000 масс Земли, — 2 × 1030 килограммов.

Таким образом, Кавендиш измерил не только массу Земли, но и массу всех прочих объектов во Вселенной (по крайней мере, в потенциале), взяв за основу в эксперименте всего лишь перемещение пары свинцовых шаров.

Неплохо для простого уравнения?

Но — и это ключевой момент всей главы — когда кто-либо желает упомянуть достижение Кавендиша, что он говорит? Что Кавендиш взвесил Землю.

Даже физики и астрономы так говорят.

Но он этого не делал! Он определил массу Земли. Он «взмассил» Землю. Такого слова в нашем языке нет, но это недостаток языка, а не мой. Что касается меня, то я считаю, что Кавендиш тот человек, который именно «взмассил» Землю — нравится это нам или нет.

Остается вопрос: «Каков же все-таки вес Земли?»

Ответ прост. Земля находится в свободном падении и, подобно любому объекту в этом состоянии, всецело реагирует на гравитационные поля, предметом воздействия которых является. Но эти воздействия не имеют никаких последствий, и потому Земля не имеет веса.

Таким образом, вес Земли равен нулю.

Глава 8

Люксонная стена

Как вы думаете, мои научные очерки появлялись в «Тайм»? (Давайте зададим этот вопрос, почему бы нам его не задать? А между тем это так, статья, о которой идет речь, появилась несколько месяцев назад, она называлась «Невозможно, и это все».

А касается статья невозможности достижения скорости света и превышения этой скорости. После того как статья была опубликована, появилось очень много разговоров о частицах, которые двигались быстрее скорости света, и на их фоне я выглядел занудой, который не признает развития физики, преодолевшей рамки старого мышления. Что еще хуже, в ней цитировался мой старый друг Артур Кларк (упомянул об это лишь случайно. — Примеч. авт.), и его рассуждения имели заголовок «Возможно, это все», что создавало впечатление, будто Артур смотрит вперед намного дальше, чем я.

К счастью, я настолько терпим, что меня не волнуют подобные вещи, и я просто выбросил это из головы. Когда я в следующий раз встретил Артура, мы по-прежнему оставались друзьями — если не считать легкого удара в челюсть, который он получил от меня.

В любом случае я не зануда, и мне не нужно прилагать слишком много усилий, чтобы это доказать.

Давайте начнем с уравнения, которое впервые было выведено голландским физиком Хендриком Антоном Лоренцем в 1890-х годах. Лоренц думал, что уравнение применимо только к электрически заряженным телам, но Эйнштейн позднее ввел его в теорию относительности, показав, что оно применимо ко всем телам, вне зависимости от того, несут они электрический заряд или нет.

Я не буду представлять уравнение Лоренца в его обычной форме, а покажу несколько видоизмененным. Моя версия этого уравнения следующая:

Земля и космос. От реальности к гипотезе - i_004.png
 (уравнение 1).

В этом уравнении m представляет массу тела, v — скорость, с которой тело движется относительно наблюдателя, с — скорость света в вакууме, a k — некоторое значение, постоянное для рассматриваемого тела.

Далее предположим, что тело движется с одной десятой скорости света. Это означает, что v = 0,1с. В этом случае дискриминатор дроби с правой части уравнения 1 становится:

Земля и космос. От реальности к гипотезе - i_005.png

Уравнение 1, таким образом, после преобразования выглядит так:

m = k/0,995 = 1,005k.

Мы можем применить это же уравнение к разным, постепенно возрастающим скоростям, скажем, к скоростям 0,2с, 0,3с, 0,4с и так далее. Я не буду утомлять вас вычислениями и сразу представлю конечный результат:

Скорость / Масса

0,1с / 1,005k

0,2с / 1,03k

0,3с / 1,05k

0,4с / 1,09k

0,5с / 1,15k

0,6с / 1,24k

0,7с / 1,41k

0,8с / 1,67k

0,9с / 2,29k

21
{"b":"178657","o":1}