Литмир - Электронная Библиотека
Содержание  
A
A

Сначала ракета-носитель «Зенит-2SБ», а затем разгонный блок «Фрегат-2СБ» вывели спутник на вытянутую орбиту вокруг Земли высотой около 340 тыс. км.

Казалось бы, создатели аппаратуры из НПО имени Лавочкина вместе с главным конструктором Владимиром Бабышкиным могли вздохнуть свободно. Да не тут-то было!..

«Ракета-носитель отработала без замечаний, – рассказывал на пресс-конференции Владимир Бабышкин. – Затем были два включения разгонного блока. Орбита аппарата несколько необычна с точки зрения выведения, потому там достаточно много ограничений, которым мы должны были удовлетворять»…

В итоге оба включения разгонного блока проходили вне зоны видимости наземных станций с территории России, и это добавило волнений наземной команде. Наконец, телеметрия показала: и первое, и второе включения прошли благополучно, все системы отработали нормально. Открылись солнечные батареи, и дальше система управления удерживала аппарат в заданном положении.

Поначалу операция по раскрытию антенны, которая состоит из 27 лепестков, находившихся во время транспортировки в сложенном состоянии, намечалась на 22 июля. Процесс раскрытия лепестков занимает приблизительно 30 минут. Однако сразу процесс не пошел, и завершено раскрытие параболической антенны радиотелескопа было лишь 23 июля. К осени «зонтик» диаметром 10 м был раскрыт полностью. «Это позволит получать изображения, координаты и угловые перемещения различных объектов Вселенной с исключительно высоким разрешением», – подвели итоги первой стадии эксперимента специалисты.

После раскрытия зеркала приемной антенны космическому радиотелескопу требуется около трех месяцев для синхронизации с земными радиотелескопами. Дело в том, что работать он должен не в одиночку, а «в связке» с наземными приборами. Планируется, что на Земле в качестве синхронных радиотелескопов будут использованы два стометровых радиотелескопа в Грин-Бэнке, Западная Виргиния, США, и в Эффельсберге, Германия, а также знаменитая радиообсерватория Аресибо, в Пуэрто-Рико.

Направленные одновременно на один и тот же звездный объект, они будут работать в режиме интерферометра. То есть, говоря попросту, с помощью компьютерных методов обработки информации полученные данные сведут воедино, и полученная картина будет соответствовать той, что могла быть получена от радиотелескопа, диаметр антенны которого был бы на 340 тыс. км больше диаметра Земли.

Наземно-космический интерферометр с такой базой обеспечит условия для получения изображений, координат и угловых перемещений различных объектов Вселенной с исключительно высоким разрешением – от 0,5 угловой миллисекунды до нескольких микросекунд. «Телескоп будет обладать исключительно высоким угловым разрешением, что позволит получить ранее недостижимые по детальности изображения исследуемых космических объектов», – подчеркнул академик РАН Николай Кардашев, директор Академического космического центра ФИАН, головной организации по комплексу научной аппаратуры спутника «Радиоастрон».

Для сравнения: разрешение, которого можно добиться с помощью «Радиоастрона», будет как минимум в 250 раз выше, чем можно добиться с помощью наземной сети радиотелескопов, и более чем в 1000 раз выше, чем у космического телескопа «Хаббл», работающего в оптическом диапазоне.

Все это позволит исследовать окрестности сверхмассивных черных дыр в активных галактиках, рассмотреть в динамике строение областей, где образуются звезды в нашей галактике Млечный Путь; изучать нейтронные звезды и черные дыры в нашей Галактике; изучить структуру и распределение межзвездной и межпланетной плазмы; построить точную модель гравитационного поля Земли, а также провести еще множество других наблюдений и следований.

Графеновый прорыв

Как известно, каждое научное открытие проходит через три стадии. Сначала в него никто не верит. Потом начинают говорить, что «в этом что-то есть». И наконец, о нем говорят: «Да кто же этого не знает?!» Создатели тончайшего в мире материала – графена – Андре Гейм и Константин Новоселов прошли через все три этапа. Поначалу им никто не верил, потом научное сообщество заинтересовалось, чем же занимаются два выходца из России. И наконец, они были удостоены за свою разработку Нобелевской премии 2010 года по физике.

Немного теории. Весьма престижная в мире физиков награда досталась нашим бывшим соотечественникам, ныне работающим в Университете Манчестера в Великобритании, за «открытие и выделение свободного одноатомного слоя углерода и объяснение его выдающихся электронных свойств».

Ну а чтобы и вам стало понятно, что к чему, – несколько слов пояснения. Как известно, углерод встречается в природе в различных аллотропных формах – графит, уголь, алмаз. Недавно к ним добавились еще карбин, фуллерены и нанотрубки.

100 великих достижений в мире техники - i_003.jpg

Андре Гейм и Константин Новоселов на фоне гексагональной кристаллической решётки графена

Про графит, уголь и алмаз написано во всех школьных учебниках. Поэтому здесь мы упомянем подробнее о новых формах.

Итак, карбин – это линейный полимер углерода, молекулы которого представляют собой длинные тонкие цепочки из углеродных атомов. Фуллерены – это полые молекулы, по форме представляющие собой полые шары, или, точнее, многогранники, состоящие из большого количества – до 560 атомов – углерода. А нанотрубки – это и в самом деле трубчатые структуры из тех же атомов углерода. Диаметром они бывают от одного до нескольких десятков нанометров, а длиной до нескольких микрон.

Графен же представляет собой тончайшую – в один атом толщиной! – пленку из тех же атомов углерода, объединенных в строгую гексагональную геометрическую структуру. Иными словами, графеном можно считать развернутую на плоскости нанотрубку.

Объяснить природу графена проще всего на таком примере. Если вы возьмете карандаш и проведете им черту на бумажном листе, то отслаивающиеся от грифеля чешуйки будут образовывать на бумаге тонкий слой. Графен – это нечто похожее, но гораздо тоньше, толщиной всего в 1–2 атома. Эта двухмерная тонкая структура, состоящая их атомов углерода, расположенных в вершинах шестиугольников по принципу пчелиных сот, – удивительное вещество. Пленка толщиной в один атом прозрачна, но обладает поразительной прочностью, в 200 раз превышающей прочность стали.

Отделять такие пленки от монолита исследователи приспособились при помощи липкой ленты – скотча. Все было так просто, что поначалу профессору Андре Гейму и его коллеге никто просто не поверил. Неужто можно столь обыденным способом отделить от графитового массива тончайшую, в один атомарный слой, пленку графита?

До недавнего времени создание подобных тончайших пленок считалось вообще невозможным. Дело в том, что более полувека назад еще один Нобелевский лауреат, советский физик-теоретик Лев Ландау показал, что подобные структуры будут неустойчивы – силы взаимодействия между атомами должны смять пленку, свернуть ее, что называется, в бараний рог. Однако выходцы из России изменили это всеобщее представление. Причем сделали это с присущей русским смекалкой.

А что на практике? Совместная работа будущих нобелевских лауреатов началась в 2001 году. Наловчившись получать тончайшие углеродные пленки, ученые стали исследовать их свойства. При этом выяснилось, что слой графита в один атом обладает рядом ценных, а порой и неожиданных свойств. Так, эта немыслимо тонкая пленка – в миллион раз тоньше листка обычной писчей бумаги, тем не менее обладает высокой прочностью, гибкостью, а главное, стабильностью своих свойств.

Кроме того, графен имеет высокую тепло– и электропроводность. А для полупроводниковой промышленности весьма необходимы материалы, в которых бы носители электрического заряда – электроны – могли перемещаться без помех. Дело в том, что всюду, где электроны натыкаются на препятствия и отклоняются от заданного прямого пути, идет интенсивное выделение тепла. Кроме того, подобные потери ограничивают рабочую частоту действия тех или иных компонентов микроэлектронных схем.

4
{"b":"177983","o":1}