Литмир - Электронная Библиотека
A
A

На первый взгляд может показаться, что ряд приборов просто-напросто дублировал друг друга; больше того, некоторые данные — о скорости образования кометных частиц, об их размерах и параметрах их движения — уже известны специалистам благодаря косвенным измерениям.

На самом деле это не так. До сих пор большинство данных получали в результате спектрометрических измерений, причем только в видимом и ИК-диапазоне. Но кометный эксперимент охватывал всю «радугу» спектра, тем самым закрывая максимум «белых пятен». До сих пор не хватало прямых измерений вблизи ядра кометы.

Чтобы получить такую исчерпывающую информацию о простой кометной пылинке, нужно суметь зарегистрировать удар по мишени каждой отдельной частицы. Специалистам пришлось ломать голову над тем, как перевести вещество пылинки из твердого в плазменное состояние (непременное условие всех спектроскопических методов исследования вещества). Столкновение на скорости 78 км/с приводило к мгновенному испарению объекта исследования. Разумеется, при столкновении испарялась не только пылевая частица: какая-то доля материала мишени тоже уходила в облачко плазмы. Но зная, что мишень сделана из чистого серебра, не представляло большого труда отделить, как говорится, зерна кометного вещества от плевел мишени.

Поскольку объем получаемых прибором сведений исключительно велик (вблизи кометы регистрировалось до 12 ударов в секунду, и всего была собрана информация о нескольких тысячах частиц), а передача этих сведений на Землю ограничена пропускной способностью телеметрических каналов связи, то в составе прибора предусмотрен специализированный микропроцессор, который по нескольким программам производил предварительную обработку информации и самостоятельно отбирал наиболее «информативные» удары.

Но ведь пыль пыли рознь: в космическом пространстве оказывались и частицы, не имеющие никакого отношения к комете. Как в течение долгого пути уберечь чувствительные элементы прибора от их воздействия?

— Мы поступили так же, как автомобилист на пыльном проселке, — рассказывал мне один из разработчиков прибора В. Хромов, — когда, открыв жалюзи, он создает в салоне давление выше атмосферного. Мы закрыли входной патрубок корпуса прибора специальной крышкой и подали внутрь газ. Снаружи — космический вакуум, внутри — почти атмосферные условия. Ни одна посторонняя частица в прибор не попадет: сгорит. А за 10 дней до сближения с кометным ядром по команде с земли крышка открылась и прибор — «Пума» — приступил к работе.

Но вот на мишени «взорвался» мельчайший кусочек кометы — и в миллиардную долю секунды образовался плазменный сгусток. Что дальше? Возникла яркая вспышка. Она регистрировалась фотоумножителем, «запускающим» отсчет времени.

Основной рабочий инструмент «Пумы» — ускоряющее электромагнитное поле. Ионы разных элементов обладают разной массой. Поэтому одно и то же напряжение разгоняло легкие ионы до значительно больших скоростей, чем тяжелые. А значит, на регистрирующий элемент прибора — коллектор — они приходили в разное время. Зная их время в пути, можно сказать, о каком элементе идет речь.

Правда, тут есть одна тонкость. Ускоряющее поле сообщало всем ионам с одинаковой массой одинаковую энергию. Но в начальный момент времени, при ударе разных тяжелых и легких пылинок о мишень, ионы с одинаковой массой приобретали все-таки чуть разную энергию. А это приводило бы к неодновременности их попадания на коллектор, чего быть не должно. Выравнивание скоростей ионов происходило в рефлекторе. Это своего рода электростатическое зеркало обладает свойством притормаживать слишком быстрые и «подгонять» медленные ионы. Принцип его действия можно пояснить таким примером.

Представьте себе шарик на резинке. Бросаете его в сторону — резинка шарик возвращает. Чем сильнее бросок, тем больше возвращающая сила. Замените шарик ионом, возвращающую силу резинки — напряженностью поля, и вы получите представление о том, как работало электростатическое зеркало. Далее, зная химический состав пылинок, их спектр, массу, частоту соударений, можно воссоздать картину их распределения в кометной атмосфере в зависимости от размеров, вычислить, на каком расстоянии от ядра находилась частица той или иной массы.

* * *

Дублеры, как известно, остаются на Земле… Случилось так, что именно это, бытующее с начала освоения космоса правило предоставило мне редкую возможность рассмотреть дублеров межпланетных роботов, в то время как они накручивали на свои космические спидометры уже десятки миллионов километров.

Я побывал в лабораторно-испытательном корпусе Института космических исследований, когда операторы вновь готовили платформу к работе. Задача, стоящая перед агрегатом-дублером, — до мельчайших подробностей воспроизводить все то, что происходит с АСП там, при подлете к комете Галлея, чтобы принять единственное правильное решение.

…Освобожденная от тепловых и вакуумных экранов, сплошь уставленная приборами, платформа являла собой редкое по красоте зрелище. Любой из приборов, удостоившийся чести работать на ней, представлял вне всякого сомнения вершинное достижение научной мысли ученых.

7. Ядро без вуали

Удивительный парадокс. Несмотря на то что за последние 100 лет наблюдений в косматой «шевелюре» комет не осталось, кажется, ни одного не сфотографированного и не промеренного «волоска», никто из астрономов не смог предсказать главного: как выглядят их ядра, скрываемые непроницаемой газопылевой вуалью.

Ясно, что создатели космических зондов стремились заглянуть за вуаль кометной атмосферы, провести эксперименты в околоядерной зоне. Но полет «впритирку» к ядру, то и дело взрывающемуся пылевыми протуберанцами, чреват серьезной опасностью: крупные, массой до грамма пылевые частицы, врезаясь на скорости 78 км/с даже в «бронированную» обшивку космороботов, могли повредить его жизненно важные узлы. Разумеется, в случае удачи подобной космической миссии телевизионные системы, как говорится, «в упор» могли рассмотреть ядро «небесной странницы». Однако расчеты показывали, что в этом варианте вероятность поражения весьма велика.

Разумеется, существовала и другая крайность: разминуться с кометным ядром на сравнительно безопасном (скажем, в несколько десятков тысяч километров) расстоянии и тем самым наверняка уберечь приборы и панели солнечных батарей АМС от сокрушающей бомбардировки космической пылью. Конечно, в случае «непыльного сближения» объем добытой космороботами информации был бы гораздо скромнее.

Что ищут «археологи космоса»? - i_006.jpg

Авторы проекта «Венера — Галлей» избрали тактику пролета, оказавшуюся оптимальной. «Вега-1» подошла к ядру кометы Галлея на расстояние 8912 км, а «Вега-2» — 8036 км.

В результате собрана уникальная научная информация, полная обработка которой, как считают специалисты, займет несколько лет. Наиболее ценная ее часть — свыше полутора тысяч портретных снимков кометы Галлея — передавалась на Землю в реальном времени. Подобный межпланетный репортаж из точки, удаленной от нашей планеты на 170 млн. км, советским космороботам удалось провести первым в мире.

Однако сколь ни искусны оказались телевизионные системы «Вег», автоматически «загонявшие» в кадр весьма капризный природный объект, умело менявшие и подбиравшие фильтры и экспозиции, комета Галлея не спешила расставаться со своими тайнами.

Лишь компьютерная детальная обработка изображения кометного ядра, маскируемого мощными газопылевыми выбросами — джетами, позволила определить его контуры и размеры, отражательную способность и другие параметры.

Итак, перед нами тело неправильной формы длиной 16 км и около 8 км в поперечнике. Внешняя схожесть этой «картофелины» с марсианскими спутниками Фобосом и Демосом (и не исключено, с некоторыми малыми спутниками Сатурна и Урана) основательно подкрепила гипотезу, предполагающую, что кометные ядра родились в той области Солнечной системы, где ныне находятся планеты-гиганты (и которые в процессе своего формирования и забросили свои осколки на далекие задворки Солнечной системы).

7
{"b":"175346","o":1}