В 2006 году Поль Стайнхардт и Нил Тьюрок предложили вариацию на тему теории тунеллирования — циклическую вселенную, которая расширяется после Большого Взрыва и сжимается в Большом Схлопывании, повторяя такое поведение каждый триллион лет или около того. В их модели энергия вакуума убывает на каждом последовательном цикле, так что в конце концов вселенная получает очень малую, но не нулевую вакуумную энергию.
В той или иной модели вселенная, вакуумная энергия которой достаточно мала, будет тут околачиваться очень долго. Условия пригодны для возникновения жизни, а у жизни полно времени, чтобы развить разум и поинтересоваться, почему она тут оказалась.
Глава 15
Математическая кутерьма
У гусей — гогот, у львов — достоинство, у певчих птиц — пленительность, у жаворонков — ликование… А какое обобщающее существительное относится к математике? Великолепие математики? Слишком пафосно. Таинство математики? Пожалуй, немного чересчур. В результате многих выпавших на мою долю шансов понаблюдать за поведением математических индивидуумов, сбившихся в достаточно большое стадо, я пришел к выводу, что самое подходящее слово для того, что они устраивают, — «кутерьма».
Один из них в такой кутерьме изобрел одну из наиболее причудливых структур во всем предмете и открыл скрытое единство за таинственным фасадом. Их открытия, возникавшие по большей части из праздношатания в надежде, что под руку подвернется что-нибудь интересное, начинают проникать в теоретическую физику, и они могут оказаться ключевыми для некоторых самых любопытных свойств суперструн.
Математика суперструн — предмет настолько новый, что большая ее часть еще не изобретена. Но, по иронии судьбы, математики и физики как раз открыли, что суперструны, находящиеся на самом переднем крае исследований в современной физике, демонстрируют занятную связь с куском викторианской алгебры — настолько старомодным куском, что его редко упоминают в университетских курсах математики. Это алгебраическое изобретение известно как октонионы; они представляют собой структуру, идущую после вещественных чисел, комплексных чисел и кватернионов.
Октонионы были открыты в 1843 году, результат появился в печати в 1845-м за чужим авторством, и с тех пор их создатель неизменно указывался неправильно — но это большого значения не имело, поскольку внимания на них все равно никто не обращал. К 1900 году они впали в безвестность даже внутри математики. Недолгое возрождение выпало на их долю в 1925 году, когда Вигнер и фон Нейман попытались на их основе построить квантовую механику, но снова исчезли с горизонта, когда эта попытка не удалась. В 80-х годах двадцатого века они вынырнули снова из-за их потенциальной полезности в теории струн. В 1999 году они сыграли роль ключевого ингредиента в 10- и 11-мерной теориях суперструн[118].
Октонионы говорят нам, что нечто очень странное творится в районе числа 8, а что-то еще более странное происходит с физикой пространства, времени и материи. Викторианская безделушка пережила второе рождение в качестве ключа, открывающего глубокие тайны на общих рубежах математики и физики — в особенности это относится к вере в то, что пространство-время может иметь большее число измерений, чем традиционные четыре, и что именно за счет этого соединяются в одно целое гравитация и квантовая теория.
Октонионная сага разворачивается на свободных просторах абстрактной алгебры; этому сюжету посвящен прекрасный математический обзор, опубликованный в 2001 году американским математиком Джоном Баэзом. Я буду в значительной мере опираться на его идеи, изо всех сил стараясь донести до читателя хитроумные, но изящные чудеса, которыми славится эта любопытная область на стыке математики и физики. Как и с духом отца Гамлета — развоплощенным голосом из-под сцены, — значительная часть математических подробностей должна оставаться вне поля зрения аудитории. Отнеситесь ко мне с терпением и не обращайте слишком большого внимания на непонятности необъясненного профессионального жаргона. Иногда просто требуется удобное слово, чтобы не упускать из виду основных действующих лиц.
В качестве вступления могут быть полезны несколько напоминаний. С нашей историей о погоне за симметрией тесно переплелось осуществлявшееся шаг за шагом расширение числовой системы. Первым шагом было открытие (или изобретение) в середине шестнадцатого столетия комплексных чисел, в которых имеется квадратный корень из −1. До того времени математики считали, что числа — единственные и данные от Бога. И подумать нельзя было об изобретении каких-то новых чисел. Но около 1550 года Кардано и Бомбелли сделали именно это, записав квадратный корень из отрицательного числа. Понадобилось около 400 лет, чтобы разобраться, какой в этом смысл, но всего около 300, чтобы убедить математиков, что штука эта слишком полезная, чтобы стоило ее выкидывать.
К 1800-м годам вычурное изобретение Кардано и Бомбелли кристаллизовалось в числа некоего нового вида, в записи которых появился новый символ i. Комплексные числа могут показаться странными, но они оказались восхитительным средством для понимания математической физики. Задачи о тепле, свете, звуке, колебаниях, упругости, гравитации, магнетизме, электричестве и течении жидкостей и газов — все они поддались комплексному натиску, правда, только в физике размерности два.
Наша вселенная, однако, имеет три пространственных измерения — во всяком случае так считалось до самого последнего времени. Поскольку двумерная система комплексных чисел настолько эффективна в двумерной физике, может ли найтись аналогичная трехмерная числовая система, пригодная для использования в «настоящей» физике? Гамильтон потратил годы на поиски чего-то подобного, но без всякого успеха. Затем 16 октября 1843 года он испытал озарение: не смотри на три измерения, смотри на четыре, — и нацарапал свои уравнения для кватернионов на каменной кладке моста Брумбридж.
У Гамильтона был старый друг со времен колледжа по имени Джон Грейвс, фанат алгебры. Весьма вероятно, что именно Грейвс первоначально пробудил в Гамильтоне интерес к расширению числовой системы. Гамильтон написал своему приятелю длинное письмо о кватернионах на следующий же день после того, как испортил мост своей надписью.
Грейвс сначала был озадачен и сомневался, насколько законным является изобретение правил умножения прямо из головы. «У меня пока нет никакого ясного представления о том, в какой степени мы свободны в произвольном создании мнимостей и в наделении их сверхъестественными свойствами», — писал он в ответ. Но он также разглядел потенциал новой идеи и задался вопросом о том, как далеко это позволит продвинуться: «Если ваша алхимия позволяет вам создать три фунта золота, то зачем останавливаться?»
То был хороший вопрос, и Грейвс задался целью ответить на него. По прошествии двух месяцев он прислал письмо, в котором говорил, что нашел восьмимерную числовую систему. Он назвал ее октавами. С ними была связана замечательная формула о сумме восьми квадратов, к которой мы очень скоро обратимся. Он попытался определить 16-мерную числовую систему, но наткнулся на нечто, о чем он отозвался как о «непредвиденной загвоздке». Гамильтон сказал, что поможет своему другу привлечь к его открытию внимание публики, но потом оказался слишком для этого занят исследованием своих кватернионов. Затем он заметил потенциальную проблему: умножение октав не подчинялось закону ассоциативности. Это значит, что если взять произведение трех октав двумя способами, как (ab)c и a(bc), то, как правило, получатся различные ответы. После проведенной им серьезной переоценки ценностей Гамильтон был готов отказаться от закона коммутативности, но расстаться еще и с ассоциативностью — это было уже чересчур.
Далее Грейвсу крупно не повезло. До того как он сумел опубликовать свое открытие, Кэли независимо открыл то же самое и в 1845 году опубликовал как приложение к ужасной во всех остальных отношениях статье по эллиптическим функциям, настолько изобилующей ошибками, что ее изъяли из собрания его работ. Кэли назвал свою систему октонионами.