Литмир - Электронная Библиотека
Содержание  
A
A

М. И. К.: Ха-ха-ха! ( Робот поразительно похоже имитирует презрительный смех.)

А. И.: Кстати, эта книжка мне кое о чем напомнила. Показывал ли я тебе когда-нибудь в полном объеме те правила, что мы применили при составлении вычислительных процедур, которые позволили в конечном счете разработать и построить тебя и твоих коллег-роботов?

М. И. К.: Нет, пока еще нет. Я надеялся, что когда-нибудь ты все же сделаешь это, и еще я думал, что ты, может быть, полагаешь подробное описание этих процедур чем-то вроде коммерческой тайны (довольно бессмысленной, надо сказать)… или, возможно, опасаешься, что мы сочтем их грубыми и неэффективными, и тебе придется их стыдиться.

А. И.: Нет-нет, дело совсем не в этом. Я уже очень давно не стыжусь такого рода вещей. Все описание находится вот в этих папках и на дисках. Если тебе интересно, можешь ознакомиться.

Приблизительно 13 минут 41,7 секунды спустя.

М. И. К.: Очаровательно... хотя уже после беглого просмотра могу отметить, что существует по меньшей мере 519 очевидных способов достичь того же эффекта с большей простотой.

А. И.: Я прекрасно понимал, что эти процедуры еще допускают некоторое упрощение, однако овчинка не стоила выделки, и искать простейшие алгоритмы мы тогда не стали. Просто не сочли это целесообразным.

М. И. К.: Вполне вероятно, что так оно и есть. Не могу сказать, что меня очень обидело, что вы так и не удосужились отыскать наипростейшую схему. Не думаю также, что мои коллеги-роботы будут как-то по-особенному обижены этим обстоятельством.

А. И.: Честно говоря, мне кажется, что мы и так достаточно потрудились. Ты только подумай — насколько впечатляющими математическими способностями обладаешь ты и твои коллеги… и они постоянно совершенствуются, насколько я понимаю. Я бы сказал, что ты уже сейчас по математическим способностям намного превосходишь всех математиков-людей.

М. И. К.: Со всей очевидностью следует признать, что твои слова истинны. Вот ты говоришь, а я в это время думаю о нескольких новых теоремах, которые, похоже, оставят далеко позади те выводы, что публикуются в человеческих печатных изданиях. Кроме того, мы с коллегами обнаружили несколько весьма серьезных ошибок в выводах, которые математики-люди полагают истинными вот уже в течение многих лет. Несмотря на очевидную тщательность, с которой вы, люди, относитесь к проверке своих математических выводов, боюсь, что какие-то ошибки вы все же время от времени пропускаете.

А. И.: А вы, роботы? Не кажется ли тебе, что и ты, и твои коллеги математические роботы тоже можете допускать иногда ошибки — я имею в виду, в окончательно установленных, как вы утверждаете, математических теоремах.

М. И. К.: Решительно не кажется. Если робот-математик утверждает, что тот или иной вывод является теоремой, то можно быть абсолютно уверенным, что этот вывод является неопровержимо истинным. Мы никогда не делаем тех глупых ошибок, какие люди порой допускают в своих якобы строгих математических утверждениях. Разумеется, при предварительном размышлении мы — так же, как и вы, люди — часто прибегаем к догадкам и допущениям. Такие догадки могут, конечно же, оказаться и неверными; однако когда мы окончательно утверждаем, что то или иное положение является математически установленным, мы полностью гарантируем его справедливость.

Хотя, как тебе известно, мы с коллегами уже опубликовали несколько полученных нами математических выводов в некоторых из ваших наиболее респектабельных электронных журналов, нас несколько беспокоят тамошние довольно-таки нечеткие критерии, с которыми твои коллеги-математики, похоже, охотно мирятся. Мы намерены начать выпуск нашего собственного «журнала» — точнее, всеобъемлющей базы данных, содержащей все математические теоремы, которые мы полагаем неопровержимо установленными. Этим теоремам мы будем присваивать особый знак ☆ (этот символ ты как-то сам предложил нам использовать именно для такой цели), который будет означать, что они приняты как истинные нашим Советом по математическому интеллекту сообщества роботов(СМИСР) — организацией, предъявляющей чрезвычайно высокие требования к своим членам и проводящей регулярные проверки с тем, чтобы предотвратить значительную деградацию интеллектуальных способностей любого из роботов, какой бы невероятной ни показалась тебе (да и нам, если уж на то пошло) подобная возможность. Вы, люди, можете продолжать довольствоваться вашими размытыми стандартами, однако будьте уверены — если мы отмечаем какой бы то ни было вывод знаком ☆, мы однозначногарантируем его математическую истинность.

А. И.: Теперь ты и впрямь напоминаешь мне кое о чем из того, что я прочел в той самой книге, о которой мы говорили. Вспомни о тех исходных механизмах M, руководствуясь которыми я и мои коллеги запустили в действие процессы развития, результатом которых, в свою очередь, стало современное сообщество математических роботов; вспомни также и о том, что эти механизмы включают в себя все введенные нами вычислительно смоделированные факторы внешнего окружения, строгое обучение и процессы отбора, которым мы вас подвергли, а также явные (восходящие) процедуры обучения, которыми мы вас наделили, — не приходило ли тебе в голову, что эти механизмы дают вычислительную процедурудля генерации всех математических утверждений, которым ваш СМИСР когда-либо присвоит ☆-статус? Именно вычислительную, потому что вы, роботы, являетесь чисто вычислительными сущностями, развившимися (отчасти с помощью введенных нами процедур «естественного отбора») в целиком и полностью вычислительном окружении — в том смысле, что в принципе возможно построить компьютерную модель всего процесса. Все развитие вашего сообщества роботов представляет собой выполнение некоего неимоверно сложного вычисления, и тот набор ☆-утверждений, который вы в конечном счете породите, возможно воспроизвести на одной конкретной машине Тьюринга. Причем на такой машине Тьюринга, которую, в принципе, могу описать и я; более того, полагаю, что, будь у меня в запасе несколько месяцев, я, воспользовавшись теми папками и дисками, что я тебе показал, и в самом деле описал бы такую машину Тьюринга.

М. И. К.: Довольно элементарное замечание, как мне кажется. Да, ты вполне мог бы сделать все это в принципе, и я даже готов поверить, что ты сможешь осуществить это и на практике. Хотя едва ли оно стоит нескольких месяцев твоего драгоценного времени; я могу сделать это прямо сейчас, если хочешь.

А. И.: Нет, не нужно, не в этом дело. Давай порассуждаем еще немного в этом направлении и ограничим наше рассмотрение только теми ☆-утверждениями, которые являются Π 1-высказываниями. Ты помнишь, что такое Π 1-высказывание?

М. И. К.: Мне, разумеется, прекрасно известно определение Π 1-высказывания. Это утверждение о том, что какая-то конкретная машина Тьюринга никогда не завершает свою работу.

А. И.: Очень хорошо. Теперь обозначим вычислительную процедуру, которая генерирует ☆-утверждаемые Π 1-высказывания, через Q( M) или, для краткости, просто буквой Q. Логичным будет предположить, что должно существовать некое математическое утверждение гёделевского типа — также Π 1-высказывание, обозначим [26]его через G( Q), — причем истинность G( Q) является следствием утверждения, что вы, роботы, никогда не допускаете ошибок в отношении Π 1-высказываний, которым вы присваиваете статус ☆.

М. И. К.: Да; тут ты, надо полагать, тоже прав... гм.

А. И.: И утверждение G( Q) должнобыть истинным, поскольку вы, роботы, никогда не ошибаетесь в ваших ☆-утверждениях.

М. И. К.: Разумеется.

А. И.: Минуточку… отсюда также следует, что роботы должны быть неспособны установить истинность утверждения G( Q) — по крайней мере, с ☆-уверенностью.

вернуться

26

Строго говоря, обозначение G( ) было зарезервировано в §2.8для формальных систем, а не для алгоритмов, однако, полагаю, уважаемый А. И. может позволить себе некоторую вольность в обозначениях.

74
{"b":"154509","o":1}