Шрапнель – основной снаряд довоенной артиллерии, был заменен гранатой. Появилось много специальных снарядов – зажигательные, химические, дымовые, пристрелочные.
Возникли и новые подходы к управлению артиллерийским огнем, более точные методы расчета данных для стрельбы, новый вид огня – заградительный, а также огневой вал как способ сопровождения пехоты. Для повышения подвижности применяется механическая тяга.
В 1920–1930-е годы была полностью обновлена материальная часть, вводились новые орудия: гаубицы-пушки, новые марки пороха, снарядов. Артиллерия переводилась на механическую тягу, испытывались первые образцы самоходной артиллерии.
Но увлечение перспективами воздушной и танковой войн привело к недооценке роли артиллерии в США, Франции и Англии. В Германии на вооружении стояли в основном модернизированные орудия времен Первой мировой войны.
Наиболее полно вопросы боевого применения артиллерии в 20–30-е годы XX в. были отработаны в Советском Союзе. В созданной советскими военными теоретиками «теории глубокой операции» артиллерия во взаимодействии с другими родами войск должна была взламывать оборону противника, сопровождать огнем наступающие войска, вести борьбу с танками и авиацией противника. Это выразил И. В. Сталин в 1940 г. крылатой фразой «Артиллерия – бог войны».
На вооружение были приняты осколочно-фугасные, фугасные, бронебойные, бетонобойные, дымовые, зажигательные снаряды. Перед самой войной в СССР была создана реактивная артиллерия – знаменитые «катюши».
Вторая мировая война способствовала всестороннему развитию артиллерии, особенно новых ее видов – зенитной, противотанковой, реактивной и самоходной. В ходе войны выявилась неспособность танков и авиации осуществлять прорыв хорошо укрепленной обороны без поддержки артиллерии. Это вызвало увеличение артиллерийского парка во всех воюющих странах.
Наша армия перешла к новым формам артиллерийского обеспечения боя – артиллерийскому наступлению, включавшему артподготовку, поддержку пехоты и сопровождение боя пехоты и танков. К концу Второй мировой войны артиллерия была переведена в основном на механическую тягу, что повысило ее подвижность.
Во второй половине XX в. происходит качественное усиление роли артиллерии. Возросла дальность, точность стрельбы, мощность снарядов. В артиллерии применяются усовершенствованные системы оптической, звуковой и радиолокационной разведки, приборы управления огнем. Были разработаны активнореактивные снаряды, боеприпасы кассетного типа, различные виды химических боеприпасов, ядерные боеприпасы.
Артиллерия остается на вооружении всех развитых стран мира.
Атомная бомба
Атомное оружие – результат всего предшествующего развития науки и техники. Открытия, которые непосредственно связаны с его возникновением, были сделаны в конце XIX в. Огромную роль в раскрытии тайны атома сыграли исследования А. Беккереля, Пьера Кюри и Марии Склодовской-Кюри, Э. Резерфорда и др.
В 1896 г. французский физикА. Беккерель открыл испускаемое ураном неизвестное проникающее излучение, которое назвал «радиоактивным». Вскоре была обнаружена радиоактивность другого химического элемента – тория. В 1897 г. англичанин Дж. Томсон, будущий лорд Кельвин, изучая катодные лучи в разрядной трубке, пришел к выводу, что это – поток отрицательных электронов. Томсон измерил отношение заряда электрона к его массе, а затем и заряд частицы.
В 1898 г. супруги Кюри открыли два новых радиоактивных элемента – полоний и радий. Кюри, а также ученик Томсона Э. Резерфорд установили наличие трех видов излучения радиоактивных элементов – α-, β-, γ-лучи. β-лучи имели отрицательный заряд и оказались открытыми Томсоном электронами. В 1903 г. Резерфорд и Ф. Содди обнаружили, что испускание α-лучей сопровождается превращением химических элементов, например радия в радон.
В 1917 г. Резерфорд открыл положительно заряженную частицу, оказавшуюся ядром атома водорода. Ее назвали протоном. Масса протона – в 2000 раз больше массы электрона.
С 1919 г. физики-экспериментаторы изучали ядра элементов, бомбардируя их α-частицами (ядрами гелия) и протонами. При обстреле ядра попавшая в него частица меняла заряд ядра и атомный вес, т. е. превращала один элемент в другой. Впервые это сделал Резерфорд, получив при обстреле ядер азота α-частицами ядра кислорода.
В 1932 г. английский физик Дж. Чедвик доказал, что при бомбардировке бериллия α-частицами появляются новые элементарные частицы (нейтроны), которые, как указывал в то время советский физик Д. Иваненко, вместе с протонами (ядрами атомов водорода) составляют атомное ядро (до этого предполагали, что атом состоит лишь из протонов и электронов). Нейтрон не имеет электрического заряда, поэтому его было трудно обнаружить.
Тогда же английские ученые Дж. Кокрофт и Э. Уолтон осуществили первую ядерную реакцию посредством искусственного ускорения движения протонов. В начале 1934 г. супруги Фредерик и Ирен Жолио-Кюри доложили Французской академии наук об открытии искусственной радиоактивности при бомбардировке пластины алюминия α-частицами, испускаемыми радиоактивным препаратом. Атомы алюминия при этом превращались в атомы фосфора, но не обычные, а радиоактивные, которые, в свою очередь, превращались в устойчивый изотоп кремния. Одновременно с супругами Жолио-Кюри итальянский ученый Э. Ферми наблюдал искусственную радиоактивность, вызванную бомбардировкой нейтронами ряда элементов. После первых опытов были обнаружены искусственные радиоактивные изотопы многих химических элементов. В 1940 г. было открыто более 200 искусственных радиоактивных изотопов.
После открытия искусственной радиоактивности ученые всего мира начали интенсивно изучать элементарные частицы и ядерные реакции. В 30-е годы XX в. были заложены принципиальные основы новой отрасли техники. Важную роль сыграло изучение процесса ядерных цепных реакций.
В 1939 г. немецкие ученые О. Ган и Ф. Штрасман сообщили об открытии нового явления – деления атомных ядер урана под действием медленных нейтронов. Вскоре было установлено, что это деление происходит по закону цепной реакции. Нейтроны, попадая в ядра урана с атомным весом 235, не только разрушали их, но при определенных условиях вызывали появление новых нейтронов. Те, в свою очередь, разрушали последующие ядра урана и таким образом обеспечивали цепную реакцию, идущую с выделением колоссальной энергии. Среди конечных элементов облучения ученые обнаружили барий и молибден. Так было установлено, что ядро урана раскалывается на более легкие ядра. Этот процесс назвали расщеплением ядра. Позже он получил название «деление».
Опыты Ф. Жолио-Кюри показали, что при делении урана выделяется громадное количество энергии. Осколки ядер урана были обнаружены на расстоянии 3 мм от места их деления, что свидетельствовало о ядерном взрыве.
В 1940 г. советские ученые Г. Флеров и К. Петржак открыли самопроизвольное деление урана.
В декабре 1942 г. в Чикагском университете Э. Ферми впервые удалось осуществить ядерную цепную реакцию в первом ядерном реакторе с графитовым замедлителем нейтронов и естественным ураном-235. Технология производства урана-235 была крайне сложна, ибо в общей массе естественного урана этот изотоп составляет лишь 0,72 %, а остальное приходится на уран с атомным весом 238 (99,2 %) и отчасти – 234. Разница между изотопами урана в том, что уран-238 в отличие от урана-235 не делится медленными или, как их еще называют, тепловыми нейтронами. Он поглощает эти частицы, как и быстрые нейтроны, не успевшие отдать свою энергию в процессе замедления.
В связи с этим возникла проблема разделения двух изотопов урана.
В США был разработан так называемый «Манхэттенский проект». Этот проект ознаменовал создание атомного оружия. В проекте принимали участие выдающиеся европейские ученые, которые, спасаясь от фашистов, эмигрировали в Америку. Среди них были А. Эйнштейн, Э. Ферми и др.
Первое практическое использование неконтролируемой ядерной реакции было осуществлено в рамках «Манхэттенского проекта» 16 июля 1945 г., когда в штате Нью-Мексико была взорвана опытная атомная бомба.